$\operatorname{RECAP} \quad \mathbb{A}$ a $\tau$-structure $\quad \mathbb{B} a \quad \sigma$-structure
$A \quad p p$-interpretation of dimension $d$ of $\mathbb{B} \boldsymbol{A}$ is a partial surjection $I: A^{d} \rightarrow B$ s.t.
for every relation $\mathbb{R}$ in $\mathbb{B}$ defined by on atomic $\sigma$-formula $\phi$ of ority $K$,

$$
I^{-1}(\mathbb{R})=\left\{\left(a_{1}^{\prime}, \ldots, a_{d}^{\prime}, \ldots, a_{1}^{k}, \ldots, a_{d}^{k}\right) \mid\left(I\left(a_{1}^{\prime}, \ldots, a_{d}^{\prime}\right), \ldots, I\left(a_{1}^{k}, \ldots, a_{d}^{k}\right)\right) \in R^{B}\right\}
$$

has a $P P$-definition $\Phi_{I}$ in $A$.
we hare a domain formula $T_{I}$ given by $I^{-1}(T)$ Cine $\left.\operatorname{dom}(I)\right)$.
I is FULL if
$R \subseteq B^{K}$ is $P P$-def in $B$ if $I^{-1}(R)$ is $P P$-definable.
$A$ and $B$ ce $P P$-bi-interpretable if $I: A^{d} \rightarrow B$ and $J: \mathbb{B}^{k} \rightarrow A$ are interpretations $A N D$ IO J and JOI are PP-homotopic (ie. $\left\{I \circ J(\bar{x})=L_{B}(y)\right\}$ and $\left\{J_{0} I(\bar{y})=\left(d_{A}(x)\right\}\right.$ are $p p-d e f$ in $\left.B \operatorname{rrdesp} A\right)$

S3.5 BINARY SIGNATURES \& DUAL ENCODING
AIM: $\mathbb{C}$, is $P P$-bi-interpretoble with $\mathbb{B}$ in a binary signature
A doh full power of $\mathbb{C}$ is a structure $\mathbb{D}$ DOMAIN: $\mathbb{C}^{d}$ and sit. Id $\mathbb{C}^{d}: \mathbb{C}^{d} \rightarrow \mathbb{C}_{\mathbb{D}}^{d}$ is a full d-dim pp-int. of $D$ in $\mathbb{C}$
OBS:

$$
\begin{aligned}
& E_{i J}=\left\{\left(\left(x_{1} \ldots x_{d}\right),\left(y_{1}, \ldots y_{d}\right)\right) \mid x_{i}=y_{j}\right\} \text { ipp-def in } D \\
& \text { pp-def in } \mathbb{C}^{d}+\text { fullness of } 12 \mathbb{C}^{d} \\
& R \text { - op ority } \quad k \leqslant d \\
& R^{\prime}=\left\{\left(a_{1} \ldots a_{d}\right) \mid\left(Q_{1} \ldots a_{n}\right) \in R\right\} \text { is } p p \text {-def in } \mathbb{D}
\end{aligned}
$$

pp-bi-int with foll pones $D 3$ a $d$ th foll power of $\mathbb{C}$, then $\mathbb{D}$ and $\mathbb{C}$ are PP-bi-interpretbble.
$\mathbb{C}$ with maxiunt arity $m$. Let $d \geqslant m$
$B=\mathbb{C}^{[d]}$ with domain $\mathbb{C}^{d}$ and the following relations
binary

$$
E_{i J}:=\left\{\left(\left(x_{1}, \ldots x_{d}\right),\left(y_{1} \ldots y_{d}\right)\right) \mid x_{i}=y_{J}\right\}
$$

unary $R^{\prime}$

$$
R^{\varepsilon^{\tau}} \text { of orth } k \leqslant d \quad R^{\prime}:=\left\{\left(a_{1} \ldots a_{d}\right) \mid\left(a_{1}, \ldots a_{n}\right) \in R\right\}
$$

DUAL ENCODING $\mathbb{C}^{[d]}$ is a foll prow er of $\mathbb{C}$.

- if $\mathbb{C}$ is fin. bod then so is $\mathbb{C}^{[\alpha]}$
- $\operatorname{Age}(\mathbb{C})=$ Forb $^{\text {camb }}(F)$ for $F$ finite we con compute ir poly time ort $|\mathcal{F}| \quad \mathcal{F}^{\prime}$ sit. $\operatorname{Age}\left(\mathbb{C}^{[d]}\right)=$ Forb $^{\text {an }}$ ( $\left(\mathcal{F}^{\prime}\right)$.
Proof:

$$
\begin{aligned}
& 1 d: \mathbb{C}^{d} \rightarrow \mathbb{C}^{d} \text { is a pint of dm } d \text { of } \mathbb{C}^{[1]} \text { in } \mathbb{C} \\
& \pi: \mathbb{C}^{d} \rightarrow \mathbb{C} \text { is a } 1 \text {-dim pp-int of } \mathbb{C} \text { in } \mathbb{C}^{[]}
\end{aligned}
$$

by Lemma 2.4 .8 it is sufficient to prove Id one $\pi$ give a PP - bins. to deduce fullrioss.
so any stric. $F$ \& max orify $m$ is $p p$-bine with a binoy $B$
\& 3.6 pp -constructions
$C$ a class of strictures
$H(C)$ struts han eq to $\mathbb{C} \in C$.
$C(e)$ structure obtained by expanding $B \in C$ by
fin mong singleton veld isolating $b \in B$ whose Att $(B)$-orbit is PP -def in $\mathbb{B}$.
$P_{\text {fill }}^{\text {in }}(C)$ full finite powers of $\quad C \in C$
$\operatorname{Red}(C) \quad p p$-reducts of $\mathbb{C} \in C$
$I(C) \quad P P$-interpretable from structures from $C$.

$$
\begin{aligned}
& \text { Obs: }-\operatorname{Red}\left(P_{\text {fin }}^{f(n}(C)\right) \subseteq I(C) \\
& -I(I(C))=I(C) \\
& -C(C(C))=C(C)
\end{aligned}
$$

BART, OPR SAL, PINSKER $C$ a doSs of structures.
Let $D$ be the smallest class containing $C$ and closed under $H, C$ and $I$.

$$
D=H \operatorname{Red} P_{\text {full }}^{\text {fin }}(C)=H I(C)
$$

 $(B, c) \in H \mid(B) B \quad c \in B$ sit. $A u t(B)$ or bf $\& c$ is $p p-d f$.

$$
\mathbb{C}:=(\mathbb{B}, c)_{S=\{c\}} \in H I(B)
$$

Pros: $O$ the orbit of $c$ under Hut (B) $\phi$ is the $p p$-def we give a 2 -dim $\operatorname{Pp}$-int in $B$ I of a structive $A$ with same log os $\mathbb{C}$ and domain $B \times O$
I: $B^{2} \rightarrow B \times O$, Domain is $B \times O$ ard $I$ is just the identity on $B \times O$
(*) $R^{A}:=\left\{\left(\left(a, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right) \in B \times O \quad \mid\left(a, \ldots, a_{k}\right) \in R^{B} \quad b_{1}=-\quad b_{k} \in O\right\}$
(A) $S^{A}:=\{(a, a) \mid a \in O\}$
$* R^{A}:=\left\{\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right) \in B \times O \quad\left(a_{1}, a_{k}\right) \in R^{B} \quad b_{1}=b_{k} \in O\right\}$
(A) $S^{A}:=\{(a, a) \mid a \in O\}$

CeAM $A$ and $\mathbb{C}$ ore ham equir.

$$
\begin{aligned}
& g: \mathbb{C} \rightarrow A \quad a \mapsto(a, c) \\
& \begin{array}{l}
\bar{a} \in R^{c}=R^{B} \stackrel{\circledast}{\Rightarrow}\left(\left(a_{1}, c\right), . \quad\left(a_{k}, c\right)\right) \in R^{A} \\
S^{C}=\left\{<3 \text { bg (®) }(c, c) \in S^{A}\right.
\end{array} \\
& b \in O \quad \alpha_{b} \in A \cup t(B) \text { s.t } \alpha b(b)=c \text {. Set } h(a, b)=\alpha_{b}(a) \\
& h: A \rightarrow \mathbb{C} \\
& E\left(\left(a_{1}, b\right), \ldots,\left(\alpha_{k}, b\right)\right) \in R^{A} \cdot h(\bar{t})=\left(\alpha_{b}\left(a_{1}\right), \ldots, \alpha_{b}\left(a_{k}\right)\right)
\end{aligned}
$$

$\left(a_{1} \ldots a_{k}\right) \in R^{B}=R^{C}$ and $\alpha_{b}$ preserves $R^{B} \in R^{C}$.
$S 3$ pre: For $a \in O \quad S^{A}(a, a)$

$$
h(a, a)=\alpha_{a}(a)=c \in\{c\}=S^{C}
$$

$I(B) \subseteq H \operatorname{Red} P_{\text {fil }}^{\text {fil }}(B)$
proof: $\mathbb{C}$ with a $d$-dmepp-int $I$ in $\mathbb{B}$
Tane $\mathbb{D}$ a dth full pw of $\mathbb{B}$.
Define $\mathbb{D}^{\prime}$ on $\mathbb{B}^{d}$ as follows:
For $R e \tau I^{-1}(R)$ to $6 e$ ts int. in $D^{\prime}$
$D^{\prime} \in \operatorname{Red}(\mathbb{D}):$
 becase id is TuLL int.
CAAM: 'D' is hom eq to $\mathbb{C}$ $f: \underset{B^{d}}{D^{\prime}} \rightarrow \mathbb{C}$ extending I

$$
g: \mathbb{C} \rightarrow \mathbb{D}^{\prime} \text { st } f \circ g=1 d_{\mathbb{C}}
$$

MORE USEFUL CORRESPONDENCES
(0) $(\mathbb{B}, C) \in H I(B)$
(1) $I(\mathbb{B}) \subseteq H$ Red $P p_{f u l}^{p m}(\mathbb{B})$
(2) $H H(C)=H(C)$
(3) $\operatorname{Red} \operatorname{Red}(C)=\operatorname{Red}(C)$
(4) Pfoull Red $(c) \subseteq \operatorname{Red} P_{f u l}^{f m}(c)$
(5) $H \operatorname{Red} H \operatorname{Red}(C)=H \operatorname{Red}(C)$
(6) $P_{\text {full }}^{\text {fin }} H(C) \subseteq H \operatorname{Red} P_{\text {full }}^{\text {fin }}(C)$
(7) $P_{\text {fill }}^{\text {fin }} P_{\text {foll }}^{\text {fin }}(C)=P_{\text {fin l }}^{\text {fin }}(C)$

$$
D=H \operatorname{Red} P \operatorname{fin}_{\text {in }}(C)=H \mid(C)
$$

prouf: $H R e d P_{f u l}^{f m}(C) \stackrel{\smile}{\subseteq} H I(C) \stackrel{v}{\subseteq}$
cosićl under H,C I I $D \leq$ CLOSURE UNDRE I:

MORE USEFUL CORRESPONDENCES
(0) $(\mathbb{B}, C) \in H I(B)$
(1) $I(\mathbb{B}) \subseteq H$ Red $P$ fill (B)
(2) $H H(C)=H(C)$
(3) $\operatorname{Red} \operatorname{Red}(C)=\operatorname{Red}(C)$
(4) $P_{\text {fin }}^{\text {Pin }} \operatorname{Red}(C) \subseteq \operatorname{Red} R_{f=1}^{f m}(C)$
(5) $H \operatorname{Red} H \operatorname{Red}(C)=H \operatorname{Red}(C)$
(6) $P_{f=i l}^{\text {fin }} H(C) \subseteq H R e d P_{\text {fini }}^{\text {fin }}(C)$
(3) $P_{\text {filil }}^{\text {fil }} P_{\text {fin }}^{f(C)}(C)=P_{\text {finill }}^{\text {fin }}(C)$

$$
\begin{equation*}
\text { I }\left(H \operatorname{Red} P f_{\text {fil }}^{f_{n}}(C)\right) \stackrel{\text { i) }}{\subseteq} H \operatorname{Red} P_{\text {fill }}^{f i l} H \operatorname{Red} P P_{\text {full }}^{f_{n}} \tag{e}
\end{equation*}
$$

(6) HRed HRed pin Red pin (C) (4) $+(3)+(6)$

$$
\stackrel{(4)+(5)+(6)}{C_{\text {Red }} H \text { Red }} P \text { fill }=H \text { Red } P_{\text {ful }}^{\text {fin }} \text { (c) }
$$

closure underc:
$C H$ Red $P f_{\text {fal }}^{f_{m}}(c) \subseteq H I H \operatorname{Red} P_{\text {full }}^{f_{n}}(c) \subseteq H H \operatorname{Red} P P_{\text {fin }}^{\text {fin }}(C) \subseteq H R e d P_{\text {fun }}^{p_{n}}$
$K_{3} \in H \mid(B) \Rightarrow \mathbb{B}$ has a $f x$. sign veduct which is NP hord CONI: $K_{3} \notin H 1(B) \Rightarrow C S P(B) \subset P$.

