RECAP A a 2-structure B a o-structure
A pp-interpretation of dimension d of B in A is a
Partial surjection $I: A^d \rightarrow B$ s.t.
for every relation R in B defined by on atomic o-formula
q fority K,
$I^{-1}(R) = \{(a_1, \dots, a_k, \dots, a_k, \dots, a_k) (I(a_{n_1}, \dots, a_d), \dots, I(a_{n_1}, \dots, a_k)) \in R^{B'}$
has a PP -definition Φ_T in A .
$\overset{\cdot}{=}$
we have a domain formula T_{I} given by $I^{-1}(T)$ (i.e. dom(I)).
I is Full if
REBK is pp. def in B iff I-'(R) is pp. definable.
At one B are pp - bi- interpretable of I: Ad -> B and J: B" -> A
ave interpretations AND IOJ and JOI are pp-homotopic
$(i.e. \Sigma I O J (\overline{n}) = Id_B(y) \Sigma$ ord $\Sigma J O I (\overline{y}) = Id_A(n) \Sigma$ are $PP-def$ in B ord A resp.)

§3.5 BINARY SIGNATURES & DUAL ENCODING
AIM: C is pp-bi-interpretable with B in a binary signature
A dth full power of C is a structure D DOMAIN: C ^d and s.t. Id _C d: C ^d -> C ^d is a full d-d:m pp-int. of D in C
<u>OBS</u> ;
$E_{i3} := \left\{ (Cn_{i}, n_{d}), (y_{i}, y_{d}) \right\} x_{i} = y_{j} \right\} x_{pp-def} in \ D$ $pp-def in \ \mathbb{C}^{d} + fullness of ld_{cd}$
R of ority ked
$R' := \mathcal{E}(\alpha, \dots, \alpha_d) (\alpha, \dots, \alpha_n) \in \mathbb{R}^2$ is $PP - def$ in D
pp-bi-int with full powers D3 a dth full power of C, then Dord C are pp-bi-interpretable.

\mathcal{E} 3.6 pp-constructions \mathcal{C} a class of structures $\mathcal{H}(\mathcal{C})$ structs how eq to $\mathcal{C} \in \mathcal{C}$.
C(C) structures obtained by exponding BEC by fin many singleton rels isolating beB whose Aut(B) orbit is PP-def in B.
Pfull (C) full finite powers of CEC
Red(C) pp-reducts of CEC
I(C) pp-interpretable from structures from C.
O_{65} - Red ($P_{fvii}^{fn}(C)$) $\subseteq I(C)$
- I(I(C)) = I(C)
-C(C(C)) = C(C)
· · · · · · · · · · · · · · · · · · ·

BARTO, OPRSAL, PINSKER C a class of structures.
Let D be the smallest class containing C and closed
under H, C and I.
$D = HRed P_{full}^{fin}(C) = HI(C)$
If A & H Red Pful (B) we say At is pp-constructible in B.
(B,c) EHI(B) B CEB s.t. Aut (B)-or (if & C is pp-df.
$\mathbb{C} := (\mathbb{B}, c) \in HI(\mathbb{B})$ $S = \varepsilon s$
proof: O the orbit of c under Aut (B) & is the pp-def.
we give a 2-dim pp-intin B I of a structure A with some long os C
and domain $\mathbb{B} \times ($
I: B ² - BXO, DOMAIN IS BXO and I is Just the identify on BXO
$\Re R^{A} := \frac{2}{((a_{1}, b_{1}), \dots, (a_{k}, b_{k}))} \in B \times O \left((a_{1} \dots a_{k}) \in R^{B} b_{1} = \dots = b_{k} \in O^{2}_{3}$
$ S^{\star} := \{(a,a) \mid a \in O\} $

$ \mathbb{R}^{A} := \mathbb{P}((a_{1}, b_{1}), \dots, (a_{k}, b_{k})) \in \mathbb{B} \times \mathbb{O} \mid (a_{1} \dots a_{k}) \in \mathbb{R}^{B} b_{1} = \dots = b_{k} \in \mathbb{O}^{2} $
$ S^{\star} := \{(a,a) \mid a \in O\} $
CEAIM A and C are how equiv.
$g; \mathbb{C} \rightarrow A = \alpha (\rightarrow C\alpha, c)$
$\overline{a} \in \mathbb{R}^{C} = \mathbb{R}^{B} \xrightarrow{(\mathcal{A})} (Ca_{1}, c), \dots, (a_{k}, c)) \in \mathbb{R}^{A}$
$S^{C} = \{ \{ c \} \} $ $(c, c) \in S^{A}$
$b \in O$ $x_b \in Aut (B)$ st $x_b(b) = C$. Set $h(a, b) = x_b(a)$
$h: A \rightarrow C$
•
$E((a_1, 6), \ldots, (a_k, 6)) \in \mathbb{R}^A$. $h(E) = (X (a_1), \ldots, X (a_k))$
$E((a_1, 6), \dots, (a_k, 6)) \in \mathbb{R}^A$. $h(\overline{t}) = (X \cdot 6(a_1), \dots, X \cdot 6(a_k)))$ $(a_1 \dots a_k) \in \mathbb{R}^B = \mathbb{R}^C$ and X_p preserves \mathbb{R}^B $\in \mathbb{R}^C$.
$E((a_1, 6), \dots, (a_{K}, 6)) \in \mathbb{R}^{A}, h(\overline{c}) = (X \cdot 6(a_1), \dots, X \cdot 6(a_{K})))$ $(a_1 \dots a_{K}) \in \mathbb{R}^{B} = \mathbb{R}^{C} \text{ and } X_{F} \text{ preserves } \mathbb{R}^{B} \qquad \in \mathbb{R}^{C}.$ $S \xrightarrow{T} \text{ pres} \text{For } a \in \mathbb{O} S^{A}(a, a)$ $h(a, a) = X_{A}(a) = C \in \mathbb{R}^{C} = S^{C}$
$E((a_1, 6), \dots, (a_k, 6)) \in \mathbb{R}^A$. $h(\overline{t}) = (X \cdot 6(a_1), \dots, X \cdot 6(a_k)))$ $(a_1 \dots a_k) \in \mathbb{R}^B = \mathbb{R}^C$ and X_p preserves \mathbb{R}^B $\in \mathbb{R}^C$.
$E((a_1, 6), \dots, (a_{K}, 6)) \in \mathbb{R}^{A}, h(\overline{c}) = (X \cdot 6(a_1), \dots, X \cdot 6(a_{K})))$ $(a_1 \dots a_{K}) \in \mathbb{R}^{B} = \mathbb{R}^{C} \text{ and } X_{F} \text{ preserves } \mathbb{R}^{B} \qquad \in \mathbb{R}^{C}.$ $S \xrightarrow{T} \text{ pres} \text{For } a \in \mathbb{O} S^{A}(a, a)$ $h(a, a) = X_{A}(a) = C \in \mathbb{R}^{C} = S^{C}$

$I(B) \subseteq H Red Pfiii (B)$	•
proof: C with a d-dm pp-int I ju B	•
Tane Dadth full pu of B.	
	•
Defne D' on B ^d as follows:	•
For Re2 I-'(R) to be its int. in D	•
$D' \in Zed(D)$	
$\mathbb{B}^{d} \xrightarrow{\mathbb{I}} \mathbb{C}$	
	•
I-'(R) II (I R PP-def	
pp-def	•
$\mathbb{B}^d = \mathbb{D}$	•
I-'(R) 3 pp-def in D	•
because 12 is Full int.	
CIANA ID (IT have be to F	
CLAIM: ID' 13 how eq. to C	•
$f: D' \rightarrow C$ extending I	
	•
$ \cdot \cdot$	•
g: C -> D' st. fog = ldc V	
	•
	•

NORE USEFUL CORRESPONDENCES (B,c) \in HI(B) (I) I(B) \subseteq H Red P $\stackrel{fm}{Full}$ (B) (B) HH(C) = H(C) (B) Red Red(C) = Red(C) (C) $\stackrel{fin}{Full}$ Red(C) \subseteq Red $\stackrel{fm}{Full}$ (C) (C) H Red H Red(C) = H Red(C) (C) $\stackrel{fin}{Full}$ H(C) \subseteq H Red P $\stackrel{fin}{Full}$ (C) (C) $\stackrel{fin}{Full}$ $\stackrel{fin}{Full}$ (C) $=$ P $\stackrel{fin}{Full}$ (C) (C) $\stackrel{fin}{Full}$ $\stackrel{fin}{Full}$ (C) $=$ P $\stackrel{fin}{Full}$ (C)	
· · · · · · · · · · · · · · · · · · ·	

	NORE USEFUL CORRESPONDENCES
D = H Red P fin (C) = H I (C)	(B,c) \in HI(B) (D) I(B) \subseteq H Red Pfm (B) (D) HH(C) = H(C)
_	3 Red Red(C) = Red(C)
Prof: HRed Pfm (C) CHI(C) CD	(4) Pfin Red (C) < Red Afin (C)
	(3) HRed H Red (C) = H Red (C)
closed under H , C and I $D \subseteq H$	
CLOSURE UNDER I:	(Frit Pful (C) = Pfin (C)
I (HRed Pfm (C)) HRed Pfm HRed Pfn	$\hat{u}(\mathcal{C})$
EHRed H Red Pfill Red Pfill (C) EH	@ Red HRed Pful = HRed Pful C
$S_{\rm exp} = S_{\rm exp}$	
CLOSURE UNDER C:	· · · · · · · · · · · · · · · · · · ·
CHRed Pfin (C) EHIHRed Pfin (C),	CILLING PERCOL CILP-IPP
CHIER FULCE THE REA FULCE	SHITHER P'AUC) SHIFERIAN
$K \in H \setminus D \setminus D \setminus D \setminus D$	reduct work it XIP-had
K3 EHI(B) => IB has a fn. sign	VEAUAT WHICH IS INT TOTA
\underline{CONJ} : $K_3 \notin HI(B) \implies CSP(B)$	<pre>cP</pre>