
COUNTABLE CATEGORICITY

1. Introducing countable categoricity

Definition 1. Let T be a first-order theory. We say that T is ω-categorical if all models of T of
cardinality ℵ0 are isomorphic. For a first-order structure B we shall say that B is ω-categorical
if Th(B) is ω-categorical.

Remark 2. Most model theoretic literature defines ω-categoricity, slightly differently. More
precisely, the usual definition of ω-categoricity requires the existence of a unique, up to iso-
morphism, model of cardinality ℵ0. The difference here is that usually finite structures are not
considered ω-categorical – here they will be!

Examples. The following are standard examples of ω-categorical structures/theories: (Q, <);
RG (the random graph); the theory of atomless Boolean algebras.

1.1. The theorem of Engeler, Svenonius, Ryll-Nardzewski. In this section, we will prove
the most fundamental theorem about ω-categorical structures. First, some terminology:

Definition 3. Let X be a set. A set of permutations of X is called a permutation group on X
if it contains the identity and is closed under composition and inverses (i.e. if it is a group).

Definition 4. Let G be a permutation group on X and t̄ = (t1, . . . , tn) ∈ Xn an n-tuple from
X. The orbit of t̄ is the set {(αt1, . . . , αtn) : α ∈ G}.

Definition 5. A permutation group on X is called oligomorphic if it has finitely many orbits
on n-tuples for all n ∈ N.

Theorem 6 (Engeler, Svenonius, Ryll-Nardzewski). Let B be a countable structure in a count-
able signature. Then, the following are equivalent:

(1) B is ω-categorical.
(2) All types of B are principal.
(3) All models of Th(B) are atomic.
(4) For all n ∈ N every set of n-tuples that is preserved under all automorphisms of B is

definable in B.
(5) The automorphism group of B is oligomorphic.
(6) For each n ∈ N there are finitely many inequivalent over B formulas in n free variables.
(7) B has finitely many n-types for all n ∈ N.

Proof.
(1) ⇒ (2): If B has a non-principal type, then there is a countable model of Th(B) realising it and

one omitting it.
(2) ⇒ (3): This is by definition. (If A ⊨ Th(B) then every element of A realises a type of B, which

is principal, so A is atomic).
(3) ⇒ (1): Any two countable atomic structures with the same theory are isomorphic.

Date: Notes written up by Aris Papadopoulos, following Section 4.1 of [Bod21]. All mistakes are, of course,
due to him.
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(2) ⇒ (4): First, by (2) we have that B is itself atomic. In particular, any two n-tuples with
the same type are in the same orbit of Aut(B) (and, of course, any two elements in
the same orbit have the same type) so types determine the orbits of Aut(B). Since
types are isolated, the orbits of Aut(B), which are precisely the sets preserved by all
automorphisms, are definable by the isolating formulas.

(4) ⇒ (5): Suppose that Aut(B) is not oligomorphic. Then, for some n ∈ N there are infinitely
many orbits of n-tuples. Of course, orbits are preserved by all automorphisms (by
definition) and thus by (4) each of these sets is definable. But then, any subset of this
collection will be definable, giving us uncountably many definable subsets of n-tuples,
which cannot happen if the language is countable.

(5) ⇒ (6): If for some n ∈ N there were infinitely many inequivalent formulas over B, then Aut(B)
would have infinitely many orbits on n-tuples (since automorphisms preserve first-order
formulas).

(6) ⇒ (7): Since there are only finitely many inequivalent formulas over B in n-free variables we
can only build finitely many n-types of B.

(7) ⇒ (2): If B has finitely many n-types, then, for each pair we may pick a formula separating
them (i.e. belonging to one and not to the other). Then types are isolated by Boolean
combinations of the formulas separating them.

□

1.2. Compactness and ω-categoricity.
Lemma 7. Let B be a finite or countable ω-categorical structure and A a countable structure. If
there is no homomorphism (resp. embedding) of A into B then there is some finite substructure
of A which does not homomorphically map (resp. embed) into B.
Proof. We shall prove the contrapositive. So suppose that every finite substructure of A embeds
into B. The goal is to build an embedding of A into B. To this end, fix an enumeration of A,
say {a1, a2, . . . }. For each n ∈ N define an equivalence relation ∼n on the set of all embeddings
{a1, . . . , an} → B as follows:

f ∼n g if, and only if, ∃α ∈ Aut(B) s.t. αf = g.

We now build a tree:
• On the n-th level the nodes shall be the equivalence classes of ∼n.
• A node on [f ]∼n on level n will be a parent of a node [g]∼n+1 if there are f̃ ∈ [f ]∼n and

g̃ ∈ [g]∼n+1 such that g̃ ↾{a1,...,an}= f̃ .
We now observe the following:

(A) By Theorem 6, this tree is finitely branching (as there are only finitely many orbits of
Aut(B), and each equivalence class of ∼n must belong to some orbit).

(B) By assumption, all levels of the tree have nodes.
Thus, by König’s lemma there is an infinite path down this tree, that is, a path from the root
which passes through each level, say {[fi]∼i

: i ∈ N}. We shall use this path to inductively
construct an embedding e : A → B, by taking the restriction of e to {a1, . . . , an} to be an
element from the n-th node of the path. More precisely, suppose that that e has been defined
on {a1, . . . , an}. By construction of the infinite path, there are representatives ẽn ∈ [fn]∼n and
ẽn+1 ∈ [fn+1]∼n+1 , and by inductive hypothesis there is some α ∈ Aut(B) such that e = αẽn. Let
e(an+1) = αẽn+1(an+1). Clearly the restriction of e to {a1, . . . , an+1} is an element of [fn+1]∼n+1 .
It is immediate from the definition that e : A→ B is indeed an embedding. □

We give two corollaries:
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Corollary 8. Let C be any structure. Then, the following are equivalent:
(1) There is a finite structure B with the same CSP as C.
(2) C has a finite core.

Proof. (2) ⇒ (1) is trivial (since if C has a finite core then B′ then B and C are homomorphically
equivalent). For (1) ⇒ (2), suppose that CSP(B) = CSP(C) for some finite structure B. Since
all finite structures have a (unique) core, let B′ be the core of B. Then, all finite substructures
of C homomorphically map into B′ (since B and B′ are homomorphically equivalent) then by
the previous lemma C homomorphically maps into B′. Clearly B′ homomorphically maps into
C, so B′ is a finite core of C. □

Corollary 9. Let A and B be countable ω-categorical structures. Then, the following are
equivalent:

(1) CSP(A) = CSP(B).
(2) There is a homomorphism from A to B and a homomorphism from B to A.

Proof. Immediate from the previous lemma. □

WARNING This is not the case for general countable relational structures (e.g. the CSP
of the infinite line (Z; {(x, y) : y = x + 1}) is equal to the CSP of the infinite ray (N; {(x, y) :
y = x + 1}), but the infinite line does not homomorphically map into the infinite ray).

We give a stronger version of the previous lemma:
Proposition 10. Let B be a countable ω-categorical structure in a countable relational signature
τ and A any (countably infinite) τ -structure. Let σ be a set of function symbols. Then, for any
universal (τ ∪ σ)-theory T the following are equivalent:

(1) The two sorted τ -structure (A,B) has a (τ ∪σ)-expansion that satisfies T such that every
f ∈ σ denotes a function from A to B.

(2) For every finite induced substructure C of A the two-sorted τ -structure (C,B) has a
(τ ∪ σ)-expansion that satisfies T such that every f ∈ σ denotes a function from C to
B.

Proof. The implication (1) ⇒ (2) is trivial, since T is universal. For the other implication I
give a sketch:

• Let P1, P2 be two new unary relation symbols.
• Let D be the quantifier-free theory of A expanded by constants naming each element.
• Let S be a set of sentences expressing that:

(1) P1 and P2 are disjoint and denote two distinct sorts such that all function symbols
in σ are functions from P1 to P2.

(2) The τ -reduct of the structure induced by the elements of P2 has the same first-order
theory as B.

• By (2) and compactness T ∪ D ∪ S is satisfiable.
• By Löwenheim-Skolem there is a countable model of T ∪ D ∪ S.
• The substructure of the countable model generated by the constants and the elements

named by P2 must be isomorphic to (A,B), since we have named all the elements of A
and B is ω-categorical.

□
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Appendix A. Background definitions

I’ll gather here some of the relevant background, to make sure we’re on the same page:

Definition A.1. A type p(x̄) of a theory T is called principal (sometimes isolated) if there is
a formula φ(x̄) such that:

(1) T ∪ {(∃x̄)φ(x̄)} is satisfiable.
(2) For all ψ(x̄) ∈ p(x̄) we have that T ⊨ (∀x̄)(φ(x̄) → ψ(x̄)).

In this case, we say that φ(x̄) isolates p(x̄).

Definition A.2. Let B be a structure. An n-type p(x̄) of Th(B) is called realised in B if there
is some ā ∈ Bn such that B ⊨ φ(ā) for all φ(x̄) ∈ p(x̄). An n-type of Th(B) which is not realised
in B is called omitted.

Theorem A.3. Let T be a theory in a countable signature and Σ = {pi(x̄) : i ∈ ω} a set of
non-principal types of T . Then, there is a countable model B ⊨ T in which all types in Σ are
omitted.

Definition A.4. A structure B is called atomic if all types realised in B are principal, i.e. for
all tp(ā) is principal for all ā ∈ Bn.

Theorem A.5. Any two countable atomic structures with the same theory are isomorphic. In
particular, if B is a countable atomic structure and ā, b̄ ∈ Bn have the same type, then they are
in the same orbit of Aut(B).

Definition A.6. A structure B is called a core if all of its endomorphisms are embeddings. A
core of B is a structure A which is a core and is homomorphically equivalent to B.

Theorem A.7. All finite structures have a core, which is unique up to isomorphism.


