
COUNTABLE CATEGORICITY

2. Oligomorphic permutation groups

2.1. Topology. Let B be a relational structure. We define Sym(B) to be the set of all permu-
tations of the domain B of B.

Definition 1. We say that P ⊆ Sym(B) is closed if the following condition holds:
For all α ∈ Sym(B) if for every finite A ⊆ B there is some β ∈ P such that for all x ∈ A
we have that α(x) = β(x) then α ∈ P .

Remark 2. Let us say that Q ⊆ Sym(B) is open if its complement is closed. Then, by unfolding
the definitions, we get that Q is open if, and only if, it is a union of sets of the form:

{α ∈ Sym(B) : (∀x ∈ A)α(x) = β(x)},

for some fixed β ∈ Sym(B) and finite set A ⊆ B (a set of this form is the coset of the stabilisers
of a finite tuple).

Definition 3. Let P ⊆ Sym(B). We define the strong invariants of P , denoted sInv(P) to be
the set of all relations R on B such that for all α ∈ P both α and α−1 preserve R.

Proposition 4. Let P ⊆ Sym(B). Then, the following are equivalent:
(1) P is the automorphism group of some relational structure with domain B.
(2) P is a closed subgroup of Sym(B).
(3) P is the automorphism group of a homogeneous relational structure with domain B

Proof.
(1) ⇒ (2): Of course, if P is an automorphism group it is a group, so we need only show that it

is closed. Suppose that α ∈ Sym(B) is such that for every finite A ⊆ B there is some
β ∈ P such that αx = βx for all x ∈ A. Then, α must be itself an automorphism, for
otherwise this would be witnessed from the restriction of α to a finite set.

(2) ⇒ (3): We claim that if P is a closed subgroup of Sym(B) then sInv(P) is homogeneous and
P = Aut(sInv(P)). First, we obviously have that P ⊆ Aut(sInv(P)). Now, suppose that
α ∈ Aut(sInv(P)). Then, for all finite {a1, . . . , an} ⊆ B consider the relation:

Ra1,...,an = {(βa1, . . . , βan) : β ∈ P}.

Clearly, R is in sInv(P), since P is a group, and of course, since α is an automorphism
of sInv(P) then it must preserve this set. In particular, there is some β ∈ P such that
αai = βai for all i = 1, . . . , n. Since P is closed, we must have that α ∈ P . We
actually have also essentially showed homogeneity, since, any finite isomorphism, say
with domain {a1, . . . , an} preserves the relation Ra1,...,an , and thus (again by closure)
this finite isomorphism is the restriction of an element in P .

(3) ⇒ (1): Trivial.
□
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Remark 5. We have seen that being ω-categorical is a property of the automorphism group.
Thus, in fact by the previous proposition we have that every ω-categorical structure B has the
same automorphism group as a homogeneous ω-categorical structure, which, by the proof, is
just sInv(Aut(B)).

2.2. The sInv-Aut Galois connection.

Definition 6. An (anti-tone) Galois connection is a pair of functions:
F : U → V, and G : V → U,

between two posets F and G such that:
v ≤ F (u) if, and only if, u ≤ G(v),

for all u ∈ U and v ∈ V .

Remark 7. For all u ∈ U and v ∈ V we have the following:
• u ≤ G(F (u)) [Why? Apply the definition to F (u) ≤ F (u)].
• v ≤ F (G(v))
• F (u) = F (G(F (u))) [Why? We have already shown ≤, for ≥ apply the definition to

u ≤ G(F (u)) ≤ G(F (G(F (u))))]
• G(v) = G(F (G(v))

Proposition 8. Let B be a set. The operations Aut and sInv form a Galois connection between
the set of all relations over B and the sets of permutations of B.

Proof. Let R be a set of relations over B and P a set of permutations of B. We have to show
that:

P ⊆ Aut(R) if, and only if, R ⊆ sInv(P).
⇒: If P ⊆ Aut(R) then for all R ∈ R and g ∈ P we have that both g and g−1 preserve R.
⇐: If R ⊆ sInv(P) then for all g ∈ P both g and g−1 preserve R, so g ∈ Aut(R).

□

Definition 9. Let P ⊆ Sym(B). We define the following:
• The permutation group generated by P , denoted 〈P〉, to be the smallest permutation

group containing P .
• The closure of P in Sym(B), denoted P , to be the smallest closed subset of Sym)B)

containing P .

Remark 10. Explicitly, P contains P together with all the permutations α ∈ Sym(B) such that
for all finite A ⊆ B there is some β ∈ P such that α(x) = β(x) for all x ∈ A (i.e. it is exactly
P together with its “limit points”).

Proposition 11. Let P ⊆ Sym(B), and define P to be the smallest permutation group that
contains P and is closed in Sym(B). Then:

P = 〈P〉 = Aut(sInv(P)).

Proof.
• First we shall show that P∗ = 〈P〉 Note that P ⊆ P and since P is a permutation

group we immediately get (by minimality) that 〈P〉 ⊆ P. Now, since P is closed, this
(again by minimality) implies that 〈P〉 ⊆ P. Let us then show the converse. Since
P is the smallest permutation group that contains P and is closed in Sym(B) (and
〈P〉 contains P) it suffices to show that 〈P〉 is a permutation group (we already know
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that it is closed). Showing that it contains the identity is immediate (since 〈P〉 is a
permutation group), so it suffices to show closure under inverses and composition. Let
us only do the former (the argument for the latter is similar). Suppose that α, β ∈ 〈P〉.
By definition of 〈P〉 we must have that for all finite A ⊆ β there are α′, β′ ∈ 〈P〉 such
that αx = α′x and βx = β′x for all x ∈ A. Since 〈P〉 is a permutation group it contains
their composition, and hence, since 〈P〉 is closed it must contain αβ.

• Now we shall show that 〈P〉 = Aut(sInv(P)). On the one hand, if α ∈ 〈P〉, then we claim
that both α and α−1 preserve each R ∈ sInv(P). Indeed, suppose that R ∈ sInv(P) and
t ∈ R. By definition of 〈P〉 there are β1, . . . , βk ∈ P ∪P−1 such that αt = (β1 ◦ · · ·◦βk)t.
Since each βi preserves R it follows that so does α (and α−1, similarly). Conversely, if
α ∈ Aut(sInv(P)) then α and its inverse preserve the relation:

{(βt1, . . . , βtn) : β ∈ 〈P〉},

and by closure we must have that α ∈ 〈P〉.
□

Proposition 12. Let B be any structure. Then:
〈B〉fo ⊆ sInv(Aut(B)),

where 〈B〉fo denotes the set of all first-order definable relations in B.

Proof. If R ∈ 〈B〉fo then all g, g−1 ∈ Aut(B) preserve R. □

The following is an immediate consequence of Ryll-Nardzewski:

Theorem 13. If B is ω-categorical, in a countable signature, then:
sInv(Aut(B)) = 〈B〉fo,

and this characterises ω-categorical structures.

Remark 14. So, Aut(B) is precisely the automorphism group of sInv(Aut(B)), which in the
ω-categorical case is precisely 〈B〉fo. Thus, if B is ω-categorical we have that:

Aut(B) = Aut(〈B〉fo).

Theorem 15. Let B be a countable ω-categorical structure. Then:
• The sets of the form 〈A〉fo where A is a first-order reduct of B ordered by inclusion form

a lattice.
• The closed supergroups of Aut(B) in Sym(B) ordered by inclusion form a lattice.
• The operator sInv is an anti-isomorphism between these two lattices and Aut is its in-

verse.
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