COUNTABLE CATEGORICITY

2. OLIGOMORPHIC PERMUTATION GROUPS (CTD.)
Last time we left off after stating the following theorem:

Theorem 1. Let B be a countable w-categorical structure. Then:
o The sets of the form (A where A is a first-order reduct of B ordered by inclusion form
a lattice.
e The closed supergroups of Aut(B) in Sym(B) ordered by inclusion form a lattice.
e The operator sinv is an anti-isomorphism between these two lattices and Aut s its in-
verse.

One can prove this result by putting together the results that we stated last time. Here is a
more self-contained proof.

Proof. The first two items are almost immediate. We prove the third:
(i) Aut is surjective: Indeed, if P C Sym(B) is closed and contains Aut(B) then by Ryll-
Nardzewski slnv(P) is a reduct of B and Aut(slnv(P)) = P (since P = (P).
(ii) Aut is injective: If Aut(slnv((A)¢)) = Aut(slnv((A’)g)) then the strong invariants of
these structures are equal, and thus the first-order definable sets in A and A’ are equal.

O

Remark 2. Let A and B be w-categorical. Then, the following are equivalent:

(1) A and B are interdefinable (each is a first-order reduct of the other — or equivalently
(Ao = (B)fo)-
(2) Aut(A) = Aut(B)

2.1. Primitivity and transitivity.

Definition 3. Let G C Sym(B) be a permutation group. A congruence relation of G is just an
equivalence relation that is preserved by all permutations in G. A block of a congruence is an
equivalence class.

Example 4. Let B be any set and G any permutation group. We always have the following
two congruences:

e The trivial congruence: The equivalence relation is equality, (the blocks have all size 1).

e The universal congruence: The equivalence relation here is universality, (there is only
one block).

Proposition 5. Let G be a permutation group on a set B and S C B. Then, the following are
equivalent:

(1) S is a block.
(2) For all g € G either g(S) =S or g(S)NS = 0.

Proof.

Date: 23/10/23 — Notes written up by Aris Papadopoulos, following Section 4.2 of [?]. All mistakes are, of
course, due to him.
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(1) = (2) Suppose that S C B is a block of the congruence C' and g(S) N S # (). By assumption,
there is some t € g(S) NS. so there is some s € S such that g(s) = ¢t. We have that:

r € S if, and only if, (r,s) € C
if, and only if, (g(r), g(s)) = (¢(r),t) € C
if, and only if, g(r) € S,
so g(S) = S.
(2) = (1) Define
C={(z,y):x=yordgegst. gx),g(y) € S}

We claim that this is a congruence (and this suffices, since then clearly S is a block
of C'). We need only check transitivity. Say (x,y),(y,z) € C and without loss as-
sume that each pair consists of distinct elements. Then there are g;, g, € G such that

91(2), 91(y), 92(y), g2(2) € S. In particular:
92(y) € (92097 ')(S),
and by (2), this means that (go 0 g;')(S) = S. Since gi(x) € S we have that (go o
g (g1(x)) = g2(z) € S and we are done.
O

Proposition 6. If B is w-cateogrical then the congruences of Aut(B) are precisely the f.o.-
definable equivalence relations of B.
Definition 7. Let G be a permutation group on a set B. We say that G is:

(1) primitive if it has no congruences other than the trivial congruence and the universal
congruence.

(2) k-transitive if for any two k-tuples of distinct elements s,¢ € B* there is some a € G
such that as = t.

(3) transitive if it is 1-transitive.

(4) k-set transitive if for any S, T C B of cardinality k there is an o € G such that o(S) = T.

2.2. Group actions.

Definition 8. A (left) group action of a group G on a set X is a function:
o GEx X =X,

such that:

(1) e-x =z, forall z € X.

(2) (gh)-x=g-(h-x)forallz € X and all g,h € G.
We denote group actions by GO).X. We say that an action is faithful if for any two distinct
g, h € G there is some x € X such that g-z # h - x.

Remark 9. Equivalently, a group action GO X is just a group homomorphism G' — Sym(X).
The action is faithful, if, and only if, that homomorphism is injective (i.e. G = H for some
H < Sym(B)).
Examples. Let GQQX. We can build two new actions:

(1) The componentwise action GQX™ given by:

g'<x17"'axn) = (g'xlv"wg'xn)u
for all (z1,...,2,) € X™
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(2) The setwise action G()(f), given by:

g'{xlw"v'xn} ::{g'xlw":g'lﬁ}a

for all {zy,...,2,} € (f)
If GO X faithfully, then both the actions above are also faithful.
Definition 10. Let GQOX and = € X. The orbit of x under G is the set:

{g-z:9¢€G}.
Clearly, given a group action, we can consider its image in Sym(X) and think of it as a

permutation group G C Sym(B), and vice versa. All the terminology that was developed
previously will now be used for abstract group actions.

2.3. Products. Let GOQX and O C X be an orbit. Then we have a natural action GoQO
given by restricting the permutations to the elements of O. This action is always transitive,
but it is not necessarily faithful. We call the permutation group Go a transitive constituent of

G.

Proposition 11. Let GOYX be a group action. Then G is a subcartesian product of its transitive

constituents (that is, G is a subgroup of [Ipco Go and it projects onto each Go ).

Definition 12. Let X;, X5 be disjoint sets and G;()X;. Then the action G; x G5 on X; U X5
given by:

g1z if z € X,

goz if z € Xy,

(91,92)% = {

is called the natural intransitive action of G; X Gy on X7 U Xs.
Proposition 13. If G;(0X; oligomorphically for i = 1,2 then the natural intransitive action
of G1 x Gy is also oligomorphic.

Proof. Let f;(n) denote the number of orbits of the setwise action G;2X[". Clearly:

f(n) = ifl(l) X fa(n —1).

Since both fi1(n) and fa(n) are finite, for all n € N it follows that so is f(n). To show that
GG1 X (9 is oligomorphic, we need to show that it has a finite number of orbits under the
componentwise action, but this is immediate, since that number is bounded by n!f(n). m|

If G5 and G4 are the automorphism groups of w-categorical relational structures A and B
with disjoint domains A and B respectively then the natural intransitive action on A U B can
also be described as the automorphism group of a relational structure C. If 7 is the signature
of A and o is the signature of B then we can take for C the following:

e Signature: o U7 U {P}, where P is a new unary relation symbol.
e Domain: AU B.
e Interpretations: R® = R* for R € 7, R = R® for R € 0 and P® = A.

Remarks 14. Since reducts of w-categorical structures are again w-categorical, this shows, in
particular, that the disjoint union of w-categorical structures is w-categorical.

Definition 15. Let G;N) X, for i = 1,2. The product action G1 x Go(2.X; x X3 is given by:

(91,92)(371,562) = (91%;92372),
for all g; € G; and z; € X;, fori =1, 2.
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Remark 16. If G;)X; transitively, for ¢ = 1,2 then the product action is again transitive.

Proposition 17. If G;Q)X; oligomorphically for i = 1,2 then the product action of G1 X Gy is
also oligomorphic.

Proof. The number of orbits of G; x G2 (on n-tuples) is just the product of the number of
orbits of G; and G5 on n-tuples. O

Definition 18. Let A, B be relational structures (in a posteriori) disjoint languages (both with
a symbol for equality). We define their algebraic product A®B to be the structure on A x B
containing the following relations:

{((ay,b1), ... (an,by)) : (ay,...,an) € R* (by,...,b,) € B"},
for all n-ary R in the language of A and:

{((a1,b1), ... (an,by)) : (ay,...,a,) € A" (by,...,b,) € R®},
for all n-ary R in the language of B.

Remark 19. In the notation above, we have relations for equality in both cooridinates (since
each language has a symbol for equality). We will denote these by F; and Fs (note that these
are congruences of Aut(A xR B).

Proposition 20. Let A,B be relational structures. Then:
Aut(A ®B) = Aut(A) x Aut(B).
Moreover:
e [f A, B are homogeneous, then so is AR B.
o [f A B are finitely bounded (recall this means that the languages are finite and their

ages are of the form Forb®(F), for some finite set of finite structures F) then so is
ARrB.

Proof.

o Aut(AmB) = Aut(A) x Aut(B): On the one hand, it is clear that Aut(A) x Aut(B) C
Aut(A ® Aut(B), since any automorphism in the product of the two groups preserves all
relations in the algebraic product of the two structures. Now for the converse, suppose
that g € Aut(A = B).

e Homogeneity: Fix a partial isomorphism ¢ with domain {(a1,b1), ... (a,,b,)}. Let iy be
the restriction of 7 to the first coordinate and 75 the restriction of 7 to the second. Thus 7,
is a partial isomorphism of A with domain {a4,...,a,} and iy a partial isomorphism of
B with domain {b1,...,b,}. By homogeneity, both of these extend to automorpshisms,
say i1 and 5. By the previous item, the map (i1,42) € Aut(A R B), and we are done.

e Finite boundedness: To fix notation, say Age(A) = Forb®*(A) and Age(B) = Forb™*(B),
where A, B are finite sets of finite structures. Then:

Age(A®B) = Forb®™(C),

where C consists of structures of the form A = B, and A, ® B , where A € A has size n
and B,, ranges over all possible structures in the language of B of size n and B € B has
size n and A,, ranges over all possible structures in the language of B of size n.

O

Remark 21. The algebraic product of structures is an associative operation, thus we can extend
the definition to define the algebraic product of d-structures.
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Remark 22. If A and B are structures with the same signature then Aut(A x B) O Aut(A®B),
since any permutation of A x B which preserves all relations of A ®B preserves all relations of
A xB. In particular, if the structures are w-categorical, the fact that Aut(A®RB) is oligomorphic
implies that that Aut(A x B) is oligomorphic as well (orbits of the big group are partitioned
into orbits of the smaller one) and thus A x B is w-categorical too.

Upshot The class of all w-categorical structures of some fixed signature considered up to
homomorphic equivalence forms a lattice with the homomorphism order (the disjoint union is
the join and the product is the meet).
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APPENDIX A. BACKGROUND DEFINITIONS

A.1. sinv and Aut. Let B be a countable set.

o If P C Sym(B) then we define sInv(P) to be the set of all subsets of B™ (for n € N)
which are preserved by all permutations in P, and their inverses.
e If R is a collection of subsets of B" (for n € N) we write Aut(R) for the subset of

Sym(B) consisting of all permutations g € Sym(B) such that both g and g~! preserve
R for all R € R.

If A is a relational structure we write (A)g for the set of all first-order definable subsets of
A" (for n € N).

A.2. Products. If A and B are relational structures with the same signature 7, we define their
direct product to be the structure A x B which has domain A x B and:

R*(ay,...,a,) and

R*E((ay,by),. .., (an,b,)) if, and only if, {RB(bl, b,

for each n-ary relation symbol R € 7.



