COUNTABLE CATEGORICITY

2. OLIGOMORPHIC PERMUTATION GROUPS (CTD.)

Last time we left off after stating the following theorem:

Theorem 1. Let \mathbb{B} be a countable ω -categorical structure. Then:

- The sets of the form ⟨A⟩_{fo} where A is a first-order reduct of B ordered by inclusion form a lattice.
- The closed supergroups of $Aut(\mathbb{B})$ in Sym(B) ordered by inclusion form a lattice.
- The operator slnv is an anti-isomorphism between these two lattices and Aut is its inverse.

One can prove this result by putting together the results that we stated last time. Here is a more self-contained proof.

Proof. The first two items are almost immediate. We prove the third:

- (i) Aut is surjective: Indeed, if $\mathcal{P} \subseteq \mathsf{Sym}(B)$ is closed and contains $\mathsf{Aut}(\mathbb{B})$ then by Ryll-Nardzewski $\mathsf{slnv}(\mathcal{P})$ is a reduct of \mathbb{B} and $\mathsf{Aut}(\mathsf{slnv}(\mathcal{P})) = \mathcal{P}$ (since $\mathcal{P} = \overline{\langle \mathcal{P} \rangle}$.
- (ii) Aut is injective: If $Aut(slnv(\langle \mathbb{A} \rangle_{fo})) = Aut(slnv(\langle \mathbb{A}' \rangle_{fo}))$ then the strong invariants of these structures are equal, and thus the first-order definable sets in \mathbb{A} and \mathbb{A}' are equal.

Remark 2. Let \mathbb{A} and \mathbb{B} be ω -categorical. Then, the following are equivalent:

- (1) \mathbb{A} and \mathbb{B} are interdefinable (each is a first-order reduct of the other or equivalently $\langle \mathbb{A} \rangle_{fo} = \langle \mathbb{B} \rangle_{fo}$).
- (2) $\operatorname{Aut}(\mathbb{A}) = \operatorname{Aut}(\mathbb{B})$

2.1. Primitivity and transitivity.

Definition 3. Let $\mathcal{G} \subseteq \text{Sym}(B)$ be a permutation group. A *congruence relation* of \mathcal{G} is just an equivalence relation that is preserved by all permutations in \mathcal{G} . A *block* of a congruence is an equivalence class.

Example 4. Let *B* be any set and \mathcal{G} any permutation group. We always have the following two congruences:

- The *trivial* congruence: The equivalence relation is equality, (the blocks have all size 1).
- The *universal* congruence: The equivalence relation here is universality, (there is only one block).

Proposition 5. Let \mathcal{G} be a permutation group on a set B and $S \subseteq B$. Then, the following are equivalent:

(1) S is a block.

(2) For all $g \in \mathcal{G}$ either g(S) = S or $g(S) \cap S = \emptyset$.

Proof.

Date: 23/10/23 – Notes written up by Aris Papadopoulos, following Section 4.2 of [?]. All mistakes are, of course, due to him.

- (1) \Rightarrow (2) Suppose that $S \subseteq B$ is a block of the congruence C and $g(S) \cap S \neq \emptyset$. By assumption, there is some $t \in g(S) \cap S$. so there is some $s \in S$ such that g(s) = t. We have that:
 - $r \in S$ if, and only if, $(r, s) \in C$ if, and only if, $(g(r), g(s)) = (g(r), t) \in C$ if, and only if, $q(r) \in S$,

so g(S) = S. (2) \Rightarrow (1) Define

$$C = \{(x, y) : x = y \text{ or } \exists g \in \mathcal{G} \text{ s.t. } g(x), g(y) \in S\}.$$

We claim that this is a congruence (and this suffices, since then clearly S is a block of C). We need only check transitivity. Say $(x, y), (y, z) \in C$ and without loss assume that each pair consists of distinct elements. Then there are $g_1, g_2 \in \mathcal{G}$ such that $g_1(x), g_1(y), g_2(y), g_2(z) \in S$. In particular:

$$g_2(y) \in (g_2 \circ g_1^{-1})(S),$$

and by (2), this means that $(g_2 \circ g_1^{-1})(S) = S$. Since $g_1(x) \in S$ we have that $(g_2 \circ g_1^{-1})(g_1(x)) = g_2(x) \in S$ and we are done.

Proposition 6. If \mathbb{B} is ω -cateogrical then the congruences of $Aut(\mathbb{B})$ are precisely the f.o.definable equivalence relations of \mathbb{B} .

Definition 7. Let \mathcal{G} be a permutation group on a set B. We say that \mathcal{G} is:

- (1) *primitive* if it has no congruences other than the trivial congruence and the universal congruence.
- (2) *k*-transitive if for any two *k*-tuples of distinct elements $s, t \in B^k$ there is some $\alpha \in \mathcal{G}$ such that $\alpha s = t$.
- (3) *transitive* if it is 1-transitive.
- (4) k-set transitive if for any $S, T \subseteq B$ of cardinality k there is an $\alpha \in \mathcal{G}$ such that $\alpha(S) = T$.

2.2. Group actions.

Definition 8. A *(left) group action* of a group G on a set X is a function:

$$\cdot: G \times X \to X,$$

such that:

- (1) $e \cdot x = x$, for all $x \in X$.
- (2) $(gh) \cdot x = g \cdot (h \cdot x)$ for all $x \in X$ and all $g, h \in G$.

We denote group actions by $G \cap X$. We say that an action is *faithful* if for any two distinct $g, h \in G$ there is some $x \in X$ such that $g \cdot x \neq h \cdot x$.

Remark 9. Equivalently, a group action $G \cap X$ is just a group homomorphism $G \to \text{Sym}(X)$. The action is faithful, if, and only if, that homomorphism is injective (i.e. $G \cong H$ for some $H \leq \text{Sym}(B)$).

Examples. Let $G \cap X$. We can build two new actions:

(1) The componentwise action $G \cap X^n$ given by:

$$g \cdot (x_1, \ldots, x_n) := (g \cdot x_1, \ldots, g \cdot x_n),$$

for all $(x_1, \ldots, x_n) \in X^n$.

(2) The setwise action $G \cap \binom{X}{n}$, given by:

$$g \cdot \{x_1, \ldots, x_n\} := \{g \cdot x_1, \ldots, g \cdot x_n\},\$$

for all $\{x_1, \ldots, x_n\} \in \binom{X}{n}$.

If $G \cap X$ faithfully, then both the actions above are also faithful.

Definition 10. Let $G \cap X$ and $x \in X$. The orbit of x under G is the set:

 $\{g \cdot x : g \in G\}.$

Clearly, given a group action, we can consider its image in $\mathsf{Sym}(X)$ and think of it as a permutation group $\mathcal{G} \subseteq \mathsf{Sym}(B)$, and vice versa. All the terminology that was developed previously will now be used for abstract group actions.

2.3. **Products.** Let $G \cap X$ and $O \subseteq X$ be an orbit. Then we have a natural action $G_O \cap O$ given by restricting the permutations to the elements of O. This action is always transitive, but it is not necessarily faithful. We call the permutation group G_O a *transitive constituent* of G.

Proposition 11. Let $G \cap X$ be a group action. Then G is a subcartesian product of its transitive constituents (that is, G is a subgroup of $\prod_{O \in \mathcal{O}} G_O$ and it projects onto each G_O).

Definition 12. Let X_1, X_2 be disjoint sets and $G_i \cap X_i$. Then the action $G_1 \times G_2$ on $X_1 \sqcup X_2$ given by:

$$(g_1, g_2)z \mapsto \begin{cases} g_1z \text{ if } z \in X_1\\ g_2z \text{ if } z \in X_2, \end{cases}$$

is called the *natural intransitive action* of $G_1 \times G_2$ on $X_1 \sqcup X_2$.

Proposition 13. If $G_i \cap X_i$ oligomorphically for i = 1, 2 then the natural intransitive action of $G_1 \times G_2$ is also oligomorphic.

Proof. Let $f_i(n)$ denote the number of orbits of the setwise action $G_i \cap X_i^n$. Clearly:

$$f(n) = \sum_{i=1}^{n} f_1(i) \times f_2(n-i).$$

Since both $f_1(n)$ and $f_2(n)$ are finite, for all $n \in \mathbb{N}$ it follows that so is f(n). To show that $G_1 \times G_2$ is oligomorphic, we need to show that it has a finite number of orbits under the componentwise action, but this is immediate, since that number is bounded by n!f(n).

If G_1 and G_2 are the automorphism groups of ω -categorical relational structures \mathbb{A} and \mathbb{B} with disjoint domains A and B respectively then the natural intransitive action on $A \sqcup B$ can also be described as the automorphism group of a relational structure \mathbb{C} . If τ is the signature of \mathbb{A} and σ is the signature of \mathbb{B} then we can take for \mathbb{C} the following:

- Signature: $\sigma \cup \tau \cup \{P\}$, where P is a new unary relation symbol.
- Domain: $A \sqcup B$.
- Interpretations: $R^{\mathbb{C}} = R^{\mathbb{A}}$ for $R \in \tau$, $R^{\mathbb{C}} = R^{\mathbb{B}}$ for $R \in \sigma$ and $P^{\mathbb{C}} = A$.

Remarks 14. Since reducts of ω -categorical structures are again ω -categorical, this shows, in particular, that the disjoint union of ω -categorical structures is ω -categorical.

Definition 15. Let $G_i \cap X_i$, for i = 1, 2. The product action $G_1 \times G_2 \cap X_1 \times X_2$ is given by:

$$(g_1, g_2)(x_1, x_2) := (g_1 x_1, g_2 x_2),$$

for all $g_i \in G_i$ and $x_i \in X_i$, for i = 1, 2.

Remark 16. If $G_i \cap X_i$ transitively, for i = 1, 2 then the product action is again transitive.

Proposition 17. If $G_i \cap X_i$ oligomorphically for i = 1, 2 then the product action of $G_1 \times G_2$ is also oligomorphic.

Proof. The number of orbits of $G_1 \times G_2$ (on *n*-tuples) is just the product of the number of orbits of G_1 and G_2 on *n*-tuples.

Definition 18. Let \mathbb{A} , \mathbb{B} be relational structures (in a posteriori) disjoint languages (both with a symbol for equality). We define their *algebraic product* $\mathbb{A} \boxtimes \mathbb{B}$ to be the structure on $A \times B$ containing the following relations:

$$\{((a_1, b_1), \dots, (a_n, b_n)) : (a_1, \dots, a_n) \in \mathbb{R}^{\mathbb{A}}, (b_1, \dots, b_n) \in \mathbb{B}^n\},\$$

for all *n*-ary R in the language of \mathbb{A} and:

$$\{((a_1, b_1), \dots, (a_n, b_n)) : (a_1, \dots, a_n) \in A^n, (b_1, \dots, b_n) \in R^{\mathbb{B}}\},\$$

for all *n*-ary R in the language of \mathbb{B} .

Remark 19. In the notation above, we have relations for equality in both coordinates (since each language has a symbol for equality). We will denote these by E_1 and E_2 (note that these are congruences of Aut($\mathbb{A} \boxtimes \mathbb{B}$).

Proposition 20. Let \mathbb{A} , \mathbb{B} be relational structures. Then:

$$\mathsf{Aut}(\mathbb{A} \boxtimes \mathbb{B}) = \mathsf{Aut}(\mathbb{A}) \times \mathsf{Aut}(\mathbb{B}).$$

Moreover:

- If \mathbb{A} , \mathbb{B} are homogeneous, then so is $\mathbb{A} \boxtimes \mathbb{B}$.
- If A, B are finitely bounded (recall this means that the languages are finite and their ages are of the form Forb^{emb}(F), for some finite set of finite structures F) then so is A ⊠ B.

Proof.

- $\operatorname{Aut}(\mathbb{A} \boxtimes \mathbb{B}) = \operatorname{Aut}(\mathbb{A}) \times \operatorname{Aut}(\mathbb{B})$: On the one hand, it is clear that $\operatorname{Aut}(\mathbb{A}) \times \operatorname{Aut}(\mathbb{B}) \subseteq$ $\operatorname{Aut}(\mathbb{A} \boxtimes \operatorname{Aut}(\mathbb{B})$, since any automorphism in the product of the two groups preserves all relations in the algebraic product of the two structures. Now for the converse, suppose that $g \in \operatorname{Aut}(\mathbb{A} \boxtimes \mathbb{B})$.
- Homogeneity: Fix a partial isomorphism i with domain $\{(a_1, b_1), \ldots, (a_n, b_n)\}$. Let i_1 be the restriction of i to the first coordinate and i_2 the restriction of i to the second. Thus i_1 is a partial isomorphism of \mathbb{A} with domain $\{a_1, \ldots, a_n\}$ and i_2 a partial isomorphism of \mathbb{B} with domain $\{b_1, \ldots, b_n\}$. By homogeneity, both of these extend to automorphisms, say \hat{i}_1 and \hat{i}_2 . By the previous item, the map $(\hat{i}_1, \hat{i}_2) \in \operatorname{Aut}(\mathbb{A} \boxtimes \mathbb{B})$, and we are done.
- *Finite boundedness:* To fix notation, say $Age(\mathbb{A}) = Forb^{emb}(\mathcal{A})$ and $Age(\mathbb{B}) = Forb^{emb}(\mathcal{B})$, where \mathcal{A}, \mathcal{B} are finite sets of finite structures. Then:

$$\mathsf{Age}(\mathbb{A} \boxtimes \mathbb{B}) = \mathsf{Forb}^{emb}(\mathcal{C}),$$

where \mathcal{C} consists of structures of the form $\hat{A} \boxtimes B_n$ and $A_n \boxtimes \hat{B}$, where $\hat{A} \in \mathcal{A}$ has size nand B_n ranges over all possible structures in the language of \mathbb{B} of size n and $\hat{B} \in \mathcal{B}$ has size n and A_n ranges over all possible structures in the language of \mathbb{B} of size n.

Remark 21. The algebraic product of structures is an associative operation, thus we can extend the definition to define the algebraic product of d-structures.

Remark 22. If \mathbb{A} and \mathbb{B} are structures with the same signature then $\operatorname{Aut}(\mathbb{A} \times \mathbb{B}) \supseteq \operatorname{Aut}(\mathbb{A} \boxtimes \mathbb{B})$, since any permutation of $A \times B$ which preserves all relations of $\mathbb{A} \boxtimes \mathbb{B}$ preserves all relations of $\mathbb{A} \times \mathbb{B}$. In particular, if the structures are ω -categorical, the fact that $\operatorname{Aut}(\mathbb{A} \boxtimes \mathbb{B})$ is oligomorphic implies that that $\operatorname{Aut}(\mathbb{A} \times \mathbb{B})$ is oligomorphic as well (orbits of the big group are partitioned into orbits of the smaller one) and thus $\mathbb{A} \times \mathbb{B}$ is ω -categorical too.

<u>Upshot</u> The class of all ω -categorical structures of some fixed signature considered up to homomorphic equivalence forms a lattice with the *homomorphism order* (the disjoint union is the join and the product is the meet).

References

[Bod21] Manuel Bodirsky. Complexity of Infinite-Domain Constraint Satisfaction. Cambridge University Press, May 2021.

APPENDIX A. BACKGROUND DEFINITIONS

A.1. slnv and Aut. Let B be a countable set.

- If $\mathcal{P} \subseteq \mathsf{Sym}(B)$ then we define $\mathsf{sInv}(\mathcal{P})$ to be the set of all subsets of B^n (for $n \in \mathbb{N}$) which are preserved by all permutations in \mathcal{P} , and their inverses.
- If \mathcal{R} is a collection of subsets of B^n (for $n \in \mathbb{N}$) we write $\operatorname{Aut}(\mathcal{R})$ for the subset of $\operatorname{Sym}(B)$ consisting of all permutations $g \in \operatorname{Sym}(B)$ such that both g and g^{-1} preserve R for all $R \in \mathcal{R}$.

If A is a relational structure we write $\langle A \rangle_{fo}$ for the set of all first-order definable subsets of A^n (for $n \in \mathbb{N}$).

A.2. **Products.** If \mathbb{A} and \mathbb{B} are relational structures with the same signature τ , we define their *direct* product to be the structure $\mathbb{A} \times \mathbb{B}$ which has domain $A \times B$ and:

$$R^{\mathbb{A}\times\mathbb{B}}((a_1,b_1),\ldots,(a_n,b_n))$$
 if, and only if, $\begin{cases} R^{\mathbb{A}}(a_1,\ldots,a_n) \text{ and} \\ R^{\mathbb{B}}(b_1,\ldots,b_n), \end{cases}$

for each *n*-ary relation symbol $R \in \tau$.