	§ 6.1.8	(cout)	MINIM	AL CL	ONES		
Let C NINIMAL	be a Above	closed C F	subclone f is	e of (3. we : minind	soy that arity	f is in the set
र्ट दे ह е С	or cl A	h e C	xe (g e ZC	$v \epsilon n $	> n e ZC	2 < 2830
The dos ZE do	ed dov sed s.t.	re D $C \neq c$	⊋ C € ⊊ D	rs Mil	JIMAL AB	ove C	
							ons (ool vice) verso
- minind context.	clones	EXIST		N OL C	OHORPHIC	, finite l	argu oeje,
if C	Pol (E A w-a	t					bove Pol(B).
· · · · · · · · · ·	· · · · · · ·	 	 	 	· · · · · · · ·		

• symmetric if f is binary & $f(n, y) \approx f(y, n)$	· · ·	· · ·
• quasi NEAR-UNANIMITY if K > 3 and		· · · ·
$f(n, \ldots, n, y) \gtrsim f(n, \ldots, y, n) \gtrsim \cdots \gtrsim f(y, n, \ldots, n) \gtrsim f(n, \ldots)$, n)
• quasi Majority if K=3 and f is quasi-NU		
(so $f(n, n, s) \approx f(n, y, n) \approx f(y, n, n) \approx f(n, n, n)$)	· · ·	· · ·
• quasi MINORITY if K=3 and		
$f(y,y,n) \approx f(y,n,y) \approx f(n,y,y) \approx f(n,n,n)$		
Quasi Malcer if K=3		
$f(n, y, y) \approx f(y, y, n) \approx f(n, n, n)$		
• quasi SEMIPROJECTION if Jiezi, k3 and mong g s.t.		
whenever $ \epsilon_{\alpha_1}, \ldots, \alpha_{\kappa_2} < k$		
$f(a_1, \ldots, a_K) = g(a_i)$		
$ \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array}$		
we write $\hat{f}(n)$ for $f(n,, n)$		
· · · · · · · · · · · · · · · · · · ·		

f is a weak sem: projection if $\forall i \neq j \in \{1,, n\} = [n]$ $\exists S(i, j)$ and a unary non-constant operation $g_{i,j} = s, t$.
for all (a_1, \dots, a_n) s.t. $a_i = a_j$,
$f(a_{1},,a_{n}) = g_{ij}(a_{S(i,j)})$
Some notation: Let $S \subseteq [n]$ with $ S > 2$. Then, $\exists k \in [n] \ s.t. \ \forall (a_1, \dots, a_n) \ s.t. \ a_i = a_3 \ for \ ll \ i, j \in S,$ $f(a_1, \dots, a_n) = g_{i,j}(a_k).$ We define $E(S) := \begin{cases} S \ f \ k \in S; \\ \delta \ k \end{cases}$ otherwise
 if ∃ k ∈ Cn] s.t. k ∈ E(S) for all S ⊆ En] with ISI>2 f is a quasi-semi projection.

WEAK => QUASI Let f be a weak semiprojection of arity n>1	۱. ۱.
Then, fis a quasi-semiprojection.	•
CLAIH 1: For I, J $\leq [n]$ s.t. $ I = J = 2$, $I \cap J = \emptyset$,	•
$E(I) \cap E(J) \neq \phi$.	•
Prof: WLOG let $I = \{1, 2\}, J = \{3, 4\}.$	•
• $E(L4]) = \{l\} \xrightarrow{\cong} E(L) = E(J) = \{l\}$	•
• $E(I) = \{i\} \subseteq J$	•
- $E(J) = J$. Then $E(I) \cap E(J) \neq \emptyset V$	٠
$-E(J) = \{ j \} \subseteq I. \text{ Then}$ $\exists i_{2}(g_{i}) = \{ j \} \subseteq I. \{ g_{12}(g_{2}) \}$	•
$g_{12}(y) \gtrsim f(n, n, y, y, n_5,) \approx g_{34}(n) \Rightarrow g_{12}$ and g_{34} are constant	•
• $E(I) = I$, $E(J) = J$. Then, again A	•
$g_{34}(y) = f(n, n, y, y, n, s - n, n) = g_{12}(n).$	•
So $E(I) \cap E(J) \neq \emptyset$	•
	•
· · · · · · · · · · · · · · · · · · ·	•
	٠

Let	i e	= E(8	1,23)	0 E	(23,43		· · ·			· · ·	· · ·	· · ·	· · · · ·	· · ·	· · · · ·
CLAI	M 2	: Fo			,, N	ים אין ב	T	>2	, i	EE	(τ)	•			
most			$T \subseteq$	$Cn \exists l$	2 i 3 •	ELT) 5	ECCV	י] / צַ	τζ) = +	ξi ξ	5			· · · · ·
			• • •		• • •				e	fre f		N ESIG	3 75 9	= [n] \ ?	τ <u>3</u>
* * * *		• • •	• • •	• • • •	x1M 1		• • •						5). So]\Ei3	and so i	s Zá},
• • • •	• • •		• • •	• • • •	Erij3	• • •	• • •		• •		• • •				
• • • •					• • •	(3) =	[n]	\ 2 i,	JŚ	X Sm	e E	CEnjl	. £ī }):	= 2.73	
• • • •		• • •		i, JJ.	• • •		· · ·							• • •	
• • • •	• • •	• • •	• • •	• • • •	(T) >	• • •	• • •	e T						• • •	
			• • •	• • • •	E(T)	• • •	• • •		• •						
	ι λ	E EC	τ). 	for	every				ιş	with	at	Rost	two	ekneu	t.
So	f.	īs a	140	si-ser	ni projec	tion.	· · ·	· · ·	• •						
							· · · ·	· · ·	• •						
														• • •	
		• • •	• • •	• • • •			• • •	• • •	• •		• • •	• • •			
														• • •	

FIVE TYPES THEOREM (generalising Rosenberg's)
Let C be an essentially unary closed clone.
Let f be a minimal operation above C. Then f is, up to
permuting voriables, one of the following types:
() Unary;
(2) binary;
(3) a ternary quasi-majority;
(f) quasi - Malcev; $f(n, n, y) = f(y, n, n) = f(y, y, y)$
(5) a k-ary quasi-semiprojection for K 23.
⑤ a k-ang quasi-semiprojection for k≥3. Prof: Let f be terrang.
Prof: Let f be ternong.
$\frac{pnof: let f be terrany.}{f_1(n, y):=f(y, n, n), f_2(n, y):=f(n, y, n), f_3(n, y):=f(n, n, y).}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
prof: Let f be tornony. $f_1(n, y) := f(y, x, x), f_2(x, y) := f(x, y, x), f_3(x, y) := f(x, x, y).$ By minimolity $f_1(n, y) = f(x)$ or $= f(y)$ where $f(x) = f(x, x, x)$. because each must be in C and so essentially nony.
$ f_{1}(n, y) := f(y, x, n), f_{2}(x, y) := f(x, y, n), f_{3}(n, y) := f(x, n, y). $ By minimality $f_{1}(n, y) = f(n)$ or $= f(y)$ where $f(n) = f(n, n, n)$. because each must be in C and so essentially mary.
$\begin{array}{llllllllllllllllllllllllllllllllllll$

• • •	• • •		· · · · · ·		*	• • •
1.50	0.00	4.00	Clipale			0.00
WE	UN .	Then	wear	eoelr		CODE

. .	$\begin{array}{cccc} f_1 & f_2 & f_3 \\ \hline \hat{f}(x) & \hat{f}(x) & \hat{f}(x) \\ \hat{f}(x) & \hat{f}(x) & \hat{f}(y) \\ \hat{f}(x) & \hat{f}(y) & \hat{f}(x) \end{array}$	type quasi majority quasi semiprojection quasi semiprojection	. .
.	$egin{array}{ccc} \hat{f}(x) & \hat{f}(y) & \hat{f}(y) \ \hat{f}(y) & \hat{f}(y) \ \hat{f}(y) & \hat{f}(x) & \hat{f}(x) \ \hat{f}(y) & \hat{f}(x) & \hat{f}(y) \ \hat{f}(y) & \hat{f}(y) & \hat{f}(y) \ \hat{f}(y) & \hat{f}(y) & \hat{f}(y) \ \hat{f}(y) & \hat{f}(y) & \hat{f}(y) \end{array}$	quasi Maltsev quasi semiprojection quasi Maltsev quasi Maltsev quasi Maltsev	. .
		Fer K>3, fis a a quasi-semiprojeo	
.

IMPROVE MENTS!
QUASI MALCEN CANNOT HAPPEN Let GAB be a non-trivid group
acting faithfully, though not freely, on a set B. Then, there are no quasi-Malcev operations minimal above ZGT.
there are no quasi-Malcev operations minima above ZG).
prof. E
Let $\alpha \in G \setminus \{21\}$ be s.t. $\alpha a = a$ for some $a \in B$.
Let $b \neq c \in B$ be sit. $\alpha b = c$.
h(n,y) = M(n, xn, y) must depend entirely on n or on y by minimality.
• $h(a, g)$ depends on $n_{h(a,b)}^{*}$ h(a, a) = M(a, a, a) $M(a, a, a) = M(a, a, b) = M(b, b, b) \times P(a)$. $h(a, a, a) = M(a, a, b) = M(b, b, b) \times P(a)$.
• h(n,y) depends on y and is given by y?
g(b) = M(a, a, b) = H(b, b, b) = H(b, c, c) = g(c)
So we connot have a quasi-Malcar minimal above ZGS.
REMEMBER: GAB freely if $\alpha a = a \Rightarrow \alpha = 1$.
IF GAB is oligomorphic the action is not free.

BODIRKI-CHEN (2007) FROM

THEOREM 6.1.45. Let G be an oligomorphic permutation group on a countably infinite set B with r orbitals and s orbits, and let f be minimal above $\langle \mathcal{G} \rangle$. Then f is of one of the following types:

- (1) A unary operation.
- (2) A binary operation.
- (3) A ternary quasi majority operation.
- (4) A k-ary quasi semiprojection, for $3 \le k \le 2r s$.)

In ongoing work, we can improve this to

Theorem 2.7 (Three types theorem). Let $G \curvearrowright B$ be such that G is not a Boolean group acting freely on B. Let s be the (possibly infinite) number of orbits of G on B. Let f be a minimal operation above $\langle G \rangle$. Then, f is of one of the following types:

- 1. *f* is unary;
- 2. *f* is binary;
- *3. f* is a *k*-ary orbit-semiprojection for $3 \le k \le s$.

 $f(a_1, ..., a_k) = g(a_k).$

f is a k-any orbit-semiprojection if there is i E &1,..., k3 and g E ZG7 s.t. for all (a,,..., ak) with at least two entries in the some G-orbit

WE CAN SOLVE A QUESTION AT THE END of the GOOK:

(24) Does every countably infinite ω -categorical core with an essential polymorphism also have a binary essential polymorphism?

Corollary 3.8. Let *B* be an ω -categorical countable model complete core such that $\operatorname{Aut}(B)$ has ≤ 2 orbits. Then, if $\operatorname{Pol}(B)$ has an essential polymorphism, it also has a binary essential polymorphism. Moreover, this binary polymorphism is minimal above $\overline{\langle \operatorname{Aut}(B) \rangle}$.

Proof. Since *B* is an ω -categorical model complete core, $\operatorname{Pol}(B) \cap \mathcal{O}^{(1)} = \operatorname{\overline{Aut}}(B)$ (Definition 3.4). Since $\operatorname{Pol}(B)$ contains an essential polymorphism, $\operatorname{Pol}(B) \supseteq \overline{\langle \operatorname{Aut}(B) \rangle}$. Moreover, by Fact 3.2, $\operatorname{Pol}(B)$ contains a closed subclone \mathcal{C} which is minimal above $\overline{\operatorname{Aut}}(B)$. Let *f* be the minimal function such that $\overline{\langle \operatorname{Aut}(B) \cup \{f\} \rangle} = \mathcal{C}$. Since $\operatorname{Pol}(B) \cap \mathcal{O}^{(1)} = \operatorname{\overline{Aut}}(B)$, *f* is not unary. By the three-types theorem (Theorem 2.7), since $s \leq 2$, *f* has to be binary. Clearly, *f* is also essential.

Corollary 3.9. Let *B* be a countable ω -categorical structure such that Aut(B) has $s \ge 3$ orbits on *B*. Then, for each $3 \le k \le s$, *B* has a first order reduct which is a model complete core and such that it has a k-ary essential polymorphism and no essential polymorphisms of lower arity.