$\$ 6.1 .8$ HELL-NESETKIL THEOREM
HELL-NESETRIL THEOREM
Let B be a finite loopless indirected graph. Then, EITHER B is bipartite (i.e. admits a homomorphism to K_{2}) OR $\quad K_{3} \in H I(B)$.
Studawes hamomepphi dels cequivclent to stwdwes pp-interprebolle in B.
Note: B biportite $\Rightarrow C S P(B) \in P$
probem of whether an instorce is bipartite. Veducs to conveded components ad look for the (unique porsible) biportition.
$K_{3} \in H I(B) \Rightarrow C S P(B)$ is NP-complete (corocury 3.7.1)
A DIAMOND is the groph
G is DIAMOND-FREE if it does not contain a copy of a diamord os a weak subyuph.

Qoppsed to induced subguph.
e.g. K_{4} is NOT damond-free

LEMMA 6.8.2 Let B be a finite loopless graph which is NOT biportite. Then, HI (B) contains a finite diamond-free cove groph containing a triangle
proof:
WLOG:
(1) B is of mininol size among topless non-biportife gropls in $H \mid(B)$. (Otherwise, work with such minimal $B^{\prime} \in H \mid(B)$. Then, $\left.H\left|\left(B^{\prime}\right) \subseteq H\right| C B\right)$)
(2) B contains a triangle.

Recall: bipartite off all cycles are even.
Soy k is length of shortest odd cycle in B.
Take $\left(B ; E^{k-2}\right)$ for $E^{k-2}:=\left\{\left(x_{1}, x_{k-1}\right) \mid \exists x_{2} \ldots x_{k-2} E\left(x_{1}, x_{2}\right) \wedge \ldots \wedge E\left(x_{k-2}, x_{k}\right)\right.$

The new groph hos some of vertices os B ad a triangle. dsorls still loopless.

CLAIM: B is a core
otherwise cove (B) hos fewer vertices ad is still looples nan-biportite (1)
ClAIM: Every vertex of B is contained in a triangle otherwise look at subgroph of B induced on

$$
\begin{array}{r}
A:=\{x \in B \mid \exists u, v(E(n, n) \wedge E(x, v) \wedge E(x, v))\} \\
\exists x \nexists_{n}
\end{array}
$$

In this case $|A|<|B|$ and A is still loopless non-biportife (1) CLAIM 3: B does NOT contain a copy of K_{4} Otherwise there is some a, in B.
Look at subgroph of B ireluced on $A=\{x \in B \mid E(a, x)\}$

- $|A|<|B|$ sires $a \notin A$
- $A \in H \mid(B) \quad\left(\right.$ by prop 3.6 .3 sire B a cove $C_{A}^{C}(B) \subseteq H \mid(B)$

$$
\text { so } \quad A \in I C(B) \leq H(B)
$$

CLAIM 4: B is DIAMOND-FREE
Let $R(x, y):=\exists x, \vee(E(x, u) \wedge E(x, v) \wedge E(u, v) \wedge E(x, y) \wedge E(v, y))\}$

Let T be the tronsitive closure of R.
So, T is on equivalence relation on B.
Since B is finite, for some m,
$\delta_{m}(x, y):=\exists x_{1} \ldots x_{m-1}\left(R\left(x, x_{1}\right) \wedge \ldots \wedge R\left(x_{m-1}, y\right)\right)$
defines T.
CLAM 4.1: B/T is LOOPLESS
NTS $T \cap E=\phi$ (ie. we are not identifying vs with on edgy and making a loop) Proof bs contradiction
Let $(a, b) \in T \cap E$ be sot. $\delta_{n}(a, b)$ for n minimol. so $\begin{gathered}a_{0} \\ a\end{gathered} \ldots a_{n}$ st. $R\left(a_{i}, a_{i+1}\right)$ in B
we hove the following picture:

- $n>1$: otherwise we would have $a \nless b$. so a cop3 of K_{4} in B_{1}
- Suppose $n=2 \mathrm{k}$. Let

$$
S=\left\{x \in B \mid \exists x_{1} x_{k} E\left(u_{k+1}, x_{1}\right) \wedge E\left(v_{k+1}, x_{1}\right) \wedge \delta_{k-1}\left(x_{1}, x_{k}\right) \wedge E\left(x_{k}, x\right)\right\}
$$

Now, $a_{0} \int_{v_{1}}^{u_{1}}$ is a triongle in S

so induced subgraph is not biportite.

- $a_{n} \notin S$:

this would give $\delta_{n-1}\left(a_{0}, a_{n}\right)$ controdicting minimblity.
So $S \in H \mid(B)$ is loopless ven-biportife with $|S|<|B|$ *
- For $n=2 k+1$, a similor orgment gives a controdiction.

So, $B / T \in H \mid C B)$ is loopless.
B hos a triongle $\{a b c\} \Rightarrow B / T$ hos a triogle $\{a / T, b / T, c / T\}$. Sinee B is of miniund size loopless nen-biportite, T is triviol. so B is diamord - free

LEMMA 6.8 .4 Let B be a diamond-free loopless graph. Let $h:\left(K_{3}\right)^{k} \rightarrow B$ be a homomorphism. Then, there is some $l \leq k$ s.t. $\operatorname{Im} h \cong\left(K_{3}\right)^{l}$.
Proof: Moybe later

LEMMA 6.8.5 Let B be a finite diamond-free loopless graph containing a triangle.
Then, $B P P$-interprets $\left(K_{3}\right)^{K}$ with parameters for some K.
proof: Proof by CONTRADICTION.
We construct increasing $G_{1} \subset G_{2} C_{T}$ subgraphs of B st. $G_{i} \cong\left(K_{3}\right)^{k_{i}}$ 。
since B is finite, we must eventubly gat a contradiction.
$B C: G_{1}$ is the triangle in B
IS: by Assumption, $G_{i} \cong\left(K_{3}\right)^{k i}$ is NOT $p p$-definable in B with parameters. so $\exists f \in P_{0} \mid(B)$ idempotent and $v_{1} \ldots v_{k} \in G$ sit.

$$
f\left(v_{1} \ldots v_{k}\right) \notin G i \Delta \Delta
$$

So $f l G_{i}^{k}$ gives a homomorphism $\left(K_{3}\right)^{K_{i} \cdot K} B$.
By Lemma $6.8 .4, \quad G_{i+1}:=f\left(\left(G_{i}\right)^{k}\right)$ induces a copy of $\left(K_{3}\right)^{k_{i+1}}$.

- f IS IDEMPOTENT + $\Delta \Rightarrow G_{i} C_{i+1}$.

HELL-NESETRIL THEOREM
Let B be a finite loopless undirected graph. Then, EITHER B is bipartite (ie. admits a homomorphism to k_{2}) $O R \quad K_{3} \in H I(B)$.
proof: Soy B is finite uopless non-biportite. By Lemma 6.8.2 $\exists A \in H \mid(B)$ a diomord-free cove with a triage.
By Lemma $6.8 .5\left(K_{3}\right)^{k} \in I \subset(A) \subseteq H(C A)$
K_{3} ad $\left(K_{3}\right)^{k}$ ore hemom equivalent. So

$$
K_{3} \in H\left(K_{3}\right)^{k} \subseteq H I(A) \subseteq H 1(B)
$$

EXTRACIf we had time)
Let $I=\{i, \ldots, i m\} \subseteq\{1, \ldots, k\} \quad$ il $<\ldots<i m$.
π_{I}^{k} is the function

$$
\left(x_{1}, \ldots, x_{k}\right) \longmapsto\left(x_{i 1}, \ldots, x_{i m}\right)
$$

For a mop $h: A \rightarrow B$, Ger h is the equivalence relation on A where $\operatorname{kerh}\left(a, a^{\prime}\right)$ of $h(a)=h\left(a^{\prime}\right)$.

LEMMA 6.8.4 Let B be a diamond-free loopless graph and $h:\left(K_{3}\right)^{K} \rightarrow B$ be a homomorphism.
Then, there is $I \subseteq\{1, \ldots, k\}$ s. t.
(a) has the some kernel os π_{I}^{k}
(b) $\operatorname{Imh} \cong\left(K_{3}\right)^{I I I}$.
prof: Let $I \subseteq\{1, \ldots, k\}$ be maxima st kerh \subseteq ger π_{I}^{k}.
I exists since $\operatorname{ker} \pi_{\phi}^{k}$ is the total relation on $\left(K_{3}\right)^{k}$.
(a) $\operatorname{Ker} h=\operatorname{ker} \pi_{I}^{k}:$ NT $\quad \forall 0 \in\{1, \ldots, k\} \backslash I$ ad $z_{1} \ldots z_{k} z_{j}^{\prime} \in\{0,1,2\}$

$$
h\left(z_{1}, \ldots z_{\jmath} \cdots z_{k}\right)=h\left(z_{1}, \ldots, z_{j}^{\prime}, \ldots, z_{k}\right)
$$

the tuples ore related by her π li

By MAXIMALTy of $I \exists x, y \in\left(K_{3}\right)^{k}$ s, t. $\quad h(x)=h(y) \quad x_{j} \neq y_{j}$.
WLOG choose $z_{コ} \neq x_{\mathrm{J}}$ and $z_{y}^{\prime}=x_{J}$ and assume $J=k$.
'O' Any two verfices in $\left(K_{3}\right)^{k}$ have a common neigh bour $\left.\begin{array}{rl}\text { e.g. for } k=3 \quad(0,1,1) \\ & (0,0,2)\end{array}\right)(1,2,0)$

- $r:=$ common hour of x and $\left(z, z_{k}\right)=\left(z_{1}, \ldots z_{k-1}, z_{k}\right)$ since $x_{k}=z^{\prime} k \quad \sum_{z_{k}}^{x_{k}=z_{k}^{\prime}} r_{k} \Rightarrow r$ and $\left(z, z^{\prime} k\right)$ ore odjocent
- For $i<k$ Let $s_{i} \notin\left\{r_{i}, y_{i}\right\}$.
$n_{k} \notin\left\{r_{k}, y_{k}\right\} \Rightarrow\left(s x_{k}\right)$ is a common hour of r and y
- (r,zk) is a common hour of x and (souk)
- For $i<k$ let $t_{i} \notin\left\{z_{i, r}\right\}$. $\epsilon_{k} \notin\left\{z_{k}, z_{k}^{\prime}\right\}$ so t is a common u hour of $\left(z, z_{k}\right),\left(z, z^{\prime} k\right)$ and $\left(r, z_{k}\right)$

(1)

(3)

this is a DIAMOND!
(5)

$$
h(x)=h(y) \quad h(r)=h\left(r z_{k}\right)
$$

(2) Applying h we know $h(x)=h(g)$

(4)
$h(x)=h(y) \quad h(r)=h\left(r z_{k}\right)$

$h\left(s x_{k}\right)$ nt R But now this is a diomond I
(b) $\operatorname{lm} h \cong\left(K_{3}\right)^{I}$
we Just prove $\pi_{I}^{k} \circ h^{-1}$ is on isomorphism $B \rightarrow k_{3}^{I}$ - Well defined since they hove some kernel

- to prove this is on Bomorphism we prove similor tricks os the immediately preceding oryument.

