
MMSNP and examples

Alexey Barsukov

19 July 2023

1/29



Table of Contents

1 MMSNP

2 Horn-SAT

3 CSPs over the integers

2/29



MMSNP

MMSNP 3/29



Monotone Monadic SNP without Inequality

Definition

The MMSNP logic consists of ESO sentences of the form

∃X1, . . . ,Xs ∀x1, . . . , xn
m∧
i=1

¬
(
αi ∧ βi ∧ εi

)
, where

every αi is a conjunction of input atomic formulas,

every βi is a conjunction of existential atomic formulas,

every εi is a conjunction of inequalities (xi ̸= xj),

all atomic formulas of αi must be non-negated (monotone),

all existential relations X1, . . . ,Xs have arity 1 (monadic),

every εi is empty (without inequality).
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Complexity

Lemma

Every MMSNP is either in P or NP-complete if and only if every
connected MMSNP is in P or NP-complete.

Theorem ([FV’98])

For every connected MMSNP problem there exists a p-time
equivalent finite CSP.

Corollary ([Zhuk])

MMSNP has a “P vs NP-complete” dichotomy.
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An equivalent definition

Let F be a finite family of finite structures over a signature τ ⊔ σ,
where σ := {M1(·), . . . ,Ms(·)} is a “set of colors”.

Forbhom(F)

INSTANCE: A finite τ -structure A.
QUESTION: Can we color each element of A with some color
from σ such that for all F in F there is no homomorphism from F
to the resulting σ-expansion Aσ?

Lemma

For every MMSNP sentence Φ there is a family F such that
A |= Φ if and only if A ∈ Forbhom(F) for every finite structure A.
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Example

No Monochromatic Triangle

Given a graph G, color its
vertices with 2 colors so that the
result omits the two following
subgraphs.

G
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MMSNP reduces to finite CSP

Replace every triangle of the
input graph G with a
relational triple.

The original graph G is a
YES instance iff the
resulting structure S maps
to T, where T is as follows.

T

S
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The other direction

Naive approach

Replace every relational
triple of S with a triangle.

Check if the resulting graph
G satisfies the MMSNP
sentence.

Obstacle

What to do when S contains
implicit triangles?

Reason

S has cycles of length ≤ 3.

S
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Solution

Lemma [Erdős’59]

For given S, T, and ℓ > 0 there
is S′ such that

S → T iff S′ → T;

S′ has no cycles of length
less than ℓ.

S′
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Solution

Construction of S′

Replace every vertex of S
with a “bag” of size N.

For every relational triple of
S, uniformly randomly
distribute N1+ϵ triples on
the corresponding three bags
in S′.

Remove relational tuples
until there are no cycles of
length < ℓ.

S′
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Solution

Proof

By construction, S′ → S.

The number of cycles of
length < ℓ is small: O(Nϵℓ),
so we need to remove O(N)
tuples to get rid of them.

If S′ → T, then each “bag”
of size N contains at least
N
|T| vertices that are mapped
to the same vertex in T.

S′
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Solution

Proof

As tuples are distributed
uniformly randomly, even
after removing O(N) of
them, there still are tuples
induced on these smaller
“subbags”.

If we map every vertex of S
where the corresponding
“subbag” is mapped, then it
will be a homomorphism.

S′
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Why is it important?

Lemma [BMM’2021]

For every Φ in MMSNP there is an ω-categorical structure Cτ
Φ

such that

for every finite A, we have A |= Φ iff A → Cτ
Φ,

there is a one-to-one correspondence between 1-orbits of Cτ
Φ

and the elements of T,

consequently, every canonical polymorphism of CΦ induces a
polymorphism of T.

Theorem ([BMM’2021])

If CΦ has a non-trivial canonical polymorphism, then so does T.
Then, CSP(T) is in P [Zhuk] as well as Φ.
If all canonical polymorphisms of CΦ are trivial, then so are all the
polymorphisms. Then, CSP(CΦ) is NP-complete by [BOP’2018].
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Horn-SAT
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The problem

Definition

A propositional formula in conjunctive normal form is called Horn
if each clause is a Horn clause, i.e., has at most one positive literal.

Example

(¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x4 ∨ x5) ∧ (¬x6 ∨ ¬x7 ∨ ¬x8) ∧ (x9)

Horn-SAT

INSTANCE: A propositional Horn formula.
QUESTION: Is there a Boolean assignment for the variables such
that in each clause at least one literal is true?

Complexity

Linear in the size of the input [DG’84]
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An equivalent CSP

Denote C0 := {0} and C1 := {1}.
For a1, . . . , ak ∈ {0, 1}, Sa1...ak := {0, 1}k \ (a1, . . . , ak).

Proposition

All S11...10 and S11...1 are pp-definable in C0,C1, and H := S110.

Proof

S0(x) ↔ C1(x). S10(x1, x2) ↔ H(x1, x1, x2).

S11...10(x1, . . . , xm) ↔ ∃y3, . . . , ym−1 H(x1, x2, y3)
∧H(y3, x3, y4) ∧ · · · ∧ H(ym−1, xm−1, xm).

S11...1(x1, . . . , xm) ↔ ∃y S11...10(x1, . . . , xm, y) ∧ C0(y).
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An equivalent CSP

Denote C0 := {0} and C1 := {1}.
For a1, . . . , ak ∈ {0, 1}, Sa1...ak := {0, 1}k \ (a1, . . . , ak).

Proposition

All S11...10 and S11...1 are pp-definable in C0,C1, and H := S110.

Corollary

Let A := ({0, 1};C0,C1,H). Then Horn-SAT ∼p CSP(A).
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Algebraic properties of Horn-SAT

Definition

A mapping min : {0, 1}2 → {0, 1} is called binary minimum if
min(0, 0) = min(0, 1) = min(1, 0) = 0 and min(1, 1) = 1.

Proposition

For any relation R ⊆ {0, 1}n, TFAE:
1 R is preserved by min.

2 R is pp-definable in A.

2 ⇒ 1

First, prove for any mapping f and any relations R1,R2: if R2 is
pp-definable in R1 and f preserves R1, then f preserves R2. Then
check that min preserves C0,C1,H.

Horn-SAT 20/29
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1 ⇒ 2

For [n] := {1, . . . , n} and a ∈ {0, 1}n, put χa := {i ∈ [n] : ai = 1}
and χR := {χa : a ∈ R}.

Case when [n] ∈ χR

For X ⊆ [n], define its “closure”

cl(X) :=
⋂

Y : X⊆Y,Y∈χR

Y

It is the meet of all relational tuples above X. It is non-empty
because [n] ∈ χR.

Claim: X ∈ χR iff X = cl(X)

⇒: obvious
⇐: Y1,Y2 ∈ χR implies Y1 ∩ Y2 ∈ χR as R is preserved by min.
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1 ⇒ 2

Pp-definition

R(a1, . . . , an) ↔
∧

X : X={i1,...,ik}⊆[n]

∧
j : j∈cl(X)

S11...10(ai1 , . . . , aik , aj)

Correctness proof

⇒: Consider X ⊆ [n] s.t. ai1 = · · · = aik = 1. Then, X ⊆ χa and
also cl(X) ⊆ cl(χa). By the claim, cl(χa) = χa. Thus, aj = 1.
⇐: If a ̸∈ R, then ∃j ∈ cl(χa) \ χa. So, for X = χa, the
corresponding atomic formula on the right hand side will not hold.
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1 ⇒ 2

Case when [n] ̸∈ R

We have to define the “closure” differently. For all X ∈ [n] s.t.
there is Y ∈ χR containing X, we put

cl(X) :=
⋂

Y : X⊆Y,Y∈χR

Y

and cl(X) := [n] otherwise. Note that the claim still holds.

Pp-definition

For a = (a1, . . . , an),

R(a) ↔ S1...1(a) ∧
∧

X : X={i1,...,ik}⊆[n]

∧
j : j∈cl(X)

S11...10(ai1 , . . . , aik , aj)
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CSPs over the integers
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(Z, Succ)

Definition

Succ = {(x, y) : x+ 1 = y}.

0 1 2−1−2· · · · · ·

Observation

(Z,Succ) is not ω-categorical as there are infinitely many 2-orbits:
On = {(x, y) : x+ n = y} for n ∈ Z.

Proposition

There is a sentence Φ in monotone connected SNP that describes
CSP(Z,Succ).
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Proof

Φ existentially quantifies two binary relations Tc and Eq s.t.

Tc contains Succ: Succ(x, y) → Tc(x, y)

Tc is irreflexive: ¬Tc(x, x), and transitive:
Tc(x, y) ∧ Tc(y, z) → Tc(x, z)

Eq is an equivalence relation: reflexive, symmetric:
Eq(x, y) → Eq(y, x), and transitive

The classes of Eq contain vertices on the “same level”:
Eq(v,w) ∧ Succ(v, x) ∧ Succ(w, y) → Eq(x, y), and
Eq(v,w) ∧ Succ(x, v) ∧ Succ(y,w) → Eq(x, y)

Elements on the “same level” agree wrt Tc:
Tc(x, y) ∧ Eq(y, z) → Tc(x, z)

In particular, we forbid the same Eq-class to contain a Tc pair.
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Proof

If there exists a homomorphism h : G → (Z,Succ), then
interpret Eq as: Eq(x, y) ↔

(
h(x) = h(y)

)
, and put Tc to be

minimal by inclusion.
If there is a valid interpretation of Eq and Tc in G, then
G/Eq is the disjoint union of finitely many directed paths
without loops, then G/Eq → (Z, Succ), and so does G.

(G,Eq) G/Eq
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