MMSNP and examples

Alexey Barsukov

19 July 2023

Table of Contents

MMSNP

Definition

$$\exists X_1, \ldots, X_s \; \forall x_1, \ldots, x_n \bigwedge_{i=1}^m \neg (\alpha_i \land \beta_i \land \varepsilon_i), \text{ where }$$

Definition

The MMSNP logic consists of ESO sentences of the form

$$\exists X_1, \ldots, X_s \; \forall x_1, \ldots, x_n \bigwedge_{i=1}^m \neg (\alpha_i \land \beta_i \land \varepsilon_i), \text{ where }$$

• every α_i is a conjunction of input atomic formulas,

Definition

The MMSNP logic consists of ESO sentences of the form

$$\exists X_1, \ldots, X_s \; \forall x_1, \ldots, x_n \bigwedge_{i=1}^m \neg (\alpha_i \land \beta_i \land \varepsilon_i), \text{ where }$$

• every α_i is a conjunction of input atomic formulas,

• every β_i is a conjunction of existential atomic formulas,

Definition

The MMSNP logic consists of ESO sentences of the form

$$\exists X_1, \ldots, X_s \; \forall x_1, \ldots, x_n \bigwedge_{i=1}^m \neg (\alpha_i \land \beta_i \land \varepsilon_i), \text{ where }$$

every α_i is a conjunction of input atomic formulas,
every β_i is a conjunction of existential atomic formulas,
every ε_i is a conjunction of inequalities (x_i ≠ x_i),

Definition

$$\exists X_1, \ldots, X_s \; \forall x_1, \ldots, x_n \bigwedge_{i=1}^m \neg (\alpha_i \land \beta_i \land \varepsilon_i), \text{ where }$$

- every α_i is a conjunction of input atomic formulas,
- every β_i is a conjunction of existential atomic formulas,
- every ε_i is a conjunction of inequalities $(x_i \neq x_j)$,
- all atomic formulas of α_i must be non-negated (monotone),

Definition

$$\exists X_1, \ldots, X_s \; \forall x_1, \ldots, x_n \bigwedge_{i=1}^m \neg (\alpha_i \land \beta_i \land \varepsilon_i), \text{ where }$$

- every α_i is a conjunction of input atomic formulas,
- every β_i is a conjunction of existential atomic formulas,
- every ε_i is a conjunction of inequalities $(x_i \neq x_j)$,
- all atomic formulas of \(\alpha\)_i must be non-negated (monotone),
- all existential relations X₁,..., X_s have arity 1 (monadic),

Definition

$$\exists X_1, \ldots, X_s \; \forall x_1, \ldots, x_n \bigwedge_{i=1}^m \neg (\alpha_i \land \beta_i \land \varepsilon_i), \text{ where }$$

- every α_i is a conjunction of input atomic formulas,
- every β_i is a conjunction of existential atomic formulas,
- every ε_i is a conjunction of inequalities $(x_i \neq x_j)$,
- all atomic formulas of \(\alpha\)_i must be non-negated (monotone),
- all existential relations X₁,...,X_s have arity 1 (monadic),
- every ε_i is empty (without inequality).

Complexity

Lemma

Every MMSNP is either in P or NP-complete if and only if every connected MMSNP is in P or NP-complete.

Complexity

Lemma

Every MMSNP is either in P or NP-complete if and only if every connected MMSNP is in P or NP-complete.

Theorem ([FV'98])

For every connected MMSNP problem there exists a p-time equivalent finite CSP.

Complexity

Lemma

Every MMSNP is either in P or NP-complete if and only if every connected MMSNP is in P or NP-complete.

Theorem ([FV'98])

For every connected MMSNP problem there exists a p-time equivalent finite CSP.

Corollary ([Zhuk])

MMSNP has a "P vs NP-complete" dichotomy.

An equivalent definition

Let \mathcal{F} be a finite family of finite structures over a signature $\tau \sqcup \sigma$, where $\sigma := \{M_1(\cdot), \dots, M_s(\cdot)\}$ is a "set of colors".

$\mathsf{Forb}_{\mathsf{hom}}(\mathcal{F})$

INSTANCE: A finite τ -structure **A**.

QUESTION: Can we color each element of \mathbf{A} with some color from σ such that for all \mathbf{F} in \mathcal{F} there is no homomorphism from \mathbf{F} to the resulting σ -expansion \mathbf{A}^{σ} ?

Lemma

For every MMSNP sentence Φ there is a family \mathcal{F} such that $\mathbf{A} \models \Phi$ if and only if $\mathbf{A} \in \mathsf{Forb}_{\mathsf{hom}}(\mathcal{F})$ for every finite structure \mathbf{A} .

Example

No Monochromatic Triangle

Given a graph G, color its vertices with 2 colors so that the result omits the two following subgraphs.

Example

No Monochromatic Triangle

Given a graph G, color its vertices with 2 colors so that the result omits the two following subgraphs.

MMSNP reduces to finite CSP

- Replace every triangle of the input graph G with a relational triple.
- The original graph G is a YES instance iff the resulting structure S maps to T, where T is as follows.

The other direction

Naive approach

- Replace every relational triple of S with a triangle.
- Check if the resulting graph G satisfies the MMSNP sentence.

Obstacle

What to do when **S** contains implicit triangles?

Reason

 ${\bf S}$ has cycles of length \leq 3.

Lemma [Erdős'59]

For given ${\bf S},\,{\bf T},$ and $\ell>0$ there is ${\bf S}'$ such that

- $\label{eq:solution} \mathbf{S} \to \mathbf{T} \text{ iff } \mathbf{S}' \to \mathbf{T};$
- S' has no cycles of length less than ℓ.

Construction of \mathbf{S}'

- Replace every vertex of S with a "bag" of size N.
- For every relational triple of S, uniformly randomly distribute N^{1+ϵ} triples on the corresponding three bags in S'.
- Remove relational tuples until there are no cycles of length < ℓ.</p>

- By construction, $\mathbf{S}' \to \mathbf{S}$.
- The number of cycles of length < ℓ is small: O(N^{ℓℓ}), so we need to remove O(N) tuples to get rid of them.
- If S' → T, then each "bag" of size N contains at least ^N/|T| vertices that are mapped to the same vertex in T.

- As tuples are distributed uniformly randomly, even after removing O(N) of them, there still are tuples induced on these smaller "subbags".
- If we map every vertex of S where the corresponding "subbag" is mapped, then it will be a homomorphism.

Why is it important?

Lemma [BMM'2021]

For every Φ in MMSNP there is an $\omega\text{-categorical structure }\mathbf{C}_{\Phi}^{\tau}$ such that

- for every finite A, we have $A \models \Phi$ iff $A \rightarrow C_{\Phi}^{\tau}$,
- \blacksquare there is a one-to-one correspondence between 1-orbits of \mathbf{C}_{Φ}^{τ} and the elements of \mathbf{T} ,
- \blacksquare consequently, every canonical polymorphism of \mathbf{C}_{Φ} induces a polymorphism of $\mathbf{T}.$

Lemma [BMM'2021]

For every Φ in MMSNP there is an $\omega\text{-categorical structure }\mathbf{C}_{\Phi}^{\tau}$ such that

- for every finite A, we have $A \models \Phi$ iff $A \rightarrow C_{\Phi}^{\tau}$,
- \blacksquare there is a one-to-one correspondence between 1-orbits of \mathbf{C}_{Φ}^{τ} and the elements of \mathbf{T} ,
- \blacksquare consequently, every canonical polymorphism of \mathbf{C}_{Φ} induces a polymorphism of $\mathbf{T}.$

Theorem ([BMM'2021])

If C_{Φ} has a non-trivial canonical polymorphism, then so does T. Then, CSP(T) is in P [Zhuk] as well as Φ . If all canonical polymorphisms of C_{Φ} are trivial, then so are all the polymorphisms. Then, $CSP(C_{\Phi})$ is NP-complete by [BOP'2018].

Horn-SAT

The problem

Definition

A propositional formula in conjunctive normal form is called Horn if each clause is a Horn clause, i.e., has at most one positive literal.

Example

$$(\neg x_1 \vee \neg x_2 \vee x_3) \land (\neg x_4 \vee x_5) \land (\neg x_6 \vee \neg x_7 \vee \neg x_8) \land (x_9)$$

The problem

Definition

A propositional formula in conjunctive normal form is called Horn if each clause is a Horn clause, i.e., has at most one positive literal.

Example

$$(\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_4 \lor x_5) \land (\neg x_6 \lor \neg x_7 \lor \neg x_8) \land (x_9)$$

Horn-SAT

INSTANCE: A propositional Horn formula.

QUESTION: Is there a Boolean assignment for the variables such that in each clause at least one literal is true?

Complexity

Linear in the size of the input [DG'84]

• Denote
$$C_0 := \{0\}$$
 and $C_1 := \{1\}$.

• For
$$a_1, \ldots, a_k \in \{0, 1\}$$
, $S_{a_1 \ldots a_k} := \{0, 1\}^k \setminus (a_1, \ldots, a_k)$.

Proposition

All $S_{11\dots 10}$ and $S_{11\dots 1}$ are pp-definable in C_0, C_1 , and $H := S_{110}$.

• Denote
$$C_0 := \{0\}$$
 and $C_1 := \{1\}$.

• For
$$a_1, \ldots, a_k \in \{0, 1\}$$
, $S_{a_1 \ldots a_k} := \{0, 1\}^k \setminus (a_1, \ldots, a_k)$.

Proposition

All $S_{11\ldots 10}$ and $S_{11\ldots 1}$ are pp-definable in $C_0,C_1,$ and $H:=S_{110}.$

$$\blacksquare \ S_0(\mathsf{x}) \leftrightarrow C_1(\mathsf{x}). \ S_{10}(\mathsf{x}_1,\mathsf{x}_2) \leftrightarrow H(\mathsf{x}_1,\mathsf{x}_1,\mathsf{x}_2).$$

• Denote
$$C_0 := \{0\}$$
 and $C_1 := \{1\}$.

• For
$$a_1, \ldots, a_k \in \{0, 1\}$$
, $S_{a_1 \ldots a_k} := \{0, 1\}^k \setminus (a_1, \ldots, a_k)$.

Proposition

All $S_{11\ldots 10}$ and $S_{11\ldots 1}$ are pp-definable in $C_0,C_1,$ and $H:=S_{110}.$

$$\blacksquare \ S_0(x) \leftrightarrow C_1(x). \ S_{10}(x_1,x_2) \leftrightarrow H(x_1,x_1,x_2).$$

$$\begin{array}{l} \bullet \hspace{0.1 cm} S_{11\ldots 10}(x_1,\ldots,x_m) \leftrightarrow \exists y_3,\ldots,y_{m-1} \hspace{0.1 cm} H(x_1,x_2,y_3) \\ \wedge H(y_3,x_3,y_4) \wedge \cdots \wedge H(y_{m-1},x_{m-1},x_m). \end{array}$$

• Denote
$$C_0 := \{0\}$$
 and $C_1 := \{1\}$.

• For
$$a_1, \ldots, a_k \in \{0, 1\}$$
, $S_{a_1 \ldots a_k} := \{0, 1\}^k \setminus (a_1, \ldots, a_k)$.

Proposition

All $S_{11\dots 10}$ and $S_{11\dots 1}$ are pp-definable in C_0, C_1 , and $H := S_{110}$.

$$\blacksquare \ S_0(x) \leftrightarrow C_1(x). \ S_{10}(x_1,x_2) \leftrightarrow H(x_1,x_1,x_2).$$

- $\begin{array}{l} \bullet \hspace{0.1 cm} S_{11\ldots 10}(x_1,\ldots,x_m) \leftrightarrow \exists y_3,\ldots,y_{m-1} \hspace{0.1 cm} H(x_1,x_2,y_3) \\ \wedge H(y_3,x_3,y_4) \wedge \cdots \wedge H(y_{m-1},x_{m-1},x_m). \end{array}$
- $\blacksquare \ S_{11\ldots 1}(x_1,\ldots,x_m) \leftrightarrow \exists y \ S_{11\ldots 10}(x_1,\ldots,x_m,y) \wedge C_0(y).$

Proposition

All $S_{11\ldots 10}$ and $S_{11\ldots 1}$ are pp-definable in $C_0,C_1,$ and $H:=S_{110}.$

Corollary

Let $\mathbf{A} := (\{0,1\}; C_0, C_1, H)$. Then Horn-SAT $\sim_p \text{CSP}(\mathbf{A})$.

Algebraic properties of Horn-SAT

Definition

A mapping min: $\{0,1\}^2 \rightarrow \{0,1\}$ is called binary minimum if $\min(0,0) = \min(0,1) = \min(1,0) = 0$ and $\min(1,1) = 1$.

Algebraic properties of Horn-SAT

Definition

A mapping min: $\{0,1\}^2 \rightarrow \{0,1\}$ is called binary minimum if min(0,0) = min(0,1) = min(1,0) = 0 and min(1,1) = 1.

Proposition

For any relation $\mathsf{R} \subseteq \{0,1\}^n,$ TFAE:

- **1** R is preserved by min.
- **2** R is pp-definable in A.

Algebraic properties of Horn-SAT

Definition

A mapping min: $\{0,1\}^2 \rightarrow \{0,1\}$ is called binary minimum if min(0,0)=min(0,1)=min(1,0)=0 and min(1,1)=1.

Proposition

For any relation $R \subseteq \{0,1\}^n$, TFAE:

- **1** R is preserved by min.
- **2** R is pp-definable in A.

$2 \Rightarrow 1$

First, prove for any mapping f and any relations R_1, R_2 : if R_2 is pp-definable in R_1 and f preserves R_1 , then f preserves R_2 . Then check that min preserves C_0, C_1, H .

$1 \Rightarrow 2$

 $\begin{array}{l} \mbox{For } [n] := \{1, \ldots, n\} \mbox{ and } \mathbf{a} \in \{0, 1\}^n, \mbox{ put } \chi_{\mathbf{a}} := \{i \in [n] \colon a_i = 1\} \\ \mbox{ and } \chi_{\mathsf{R}} := \{\chi_{\mathbf{a}} \colon \mathbf{a} \in \mathsf{R}\}. \end{array}$

Case when $[n] \in \chi_R$

For $X \subseteq [n]$, define its "closure"

$$\mathsf{cl}(\mathsf{X}) := \bigcap_{\mathsf{Y} \colon \mathsf{X} \subseteq \mathsf{Y}, \mathsf{Y} \in \chi_{\mathsf{R}}} \mathsf{Y}$$

It is the meet of all relational tuples above X. It is non-empty because $[n]\in \chi_{\mathsf{R}}.$

$1 \Rightarrow 2$

 $\begin{array}{l} \mbox{For } [n] := \{1, \ldots, n\} \mbox{ and } \mathbf{a} \in \{0, 1\}^n \mbox{, put } \chi_{\mathbf{a}} := \{i \in [n] \colon a_i = 1\} \\ \mbox{ and } \chi_{\mathsf{R}} := \{\chi_{\mathbf{a}} \colon \mathbf{a} \in \mathsf{R}\}. \end{array}$

Case when $[n] \in \chi_R$

For $X \subseteq [n]$, define its "closure"

$$\mathsf{cl}(\mathsf{X}) := \bigcap_{\mathsf{Y} \colon \mathsf{X} \subseteq \mathsf{Y}, \mathsf{Y} \in \chi_{\mathsf{R}}} \mathsf{Y}$$

It is the meet of all relational tuples above X. It is non-empty because $[n] \in \chi_R$.

Claim: $X \in \chi_R$ iff X = cl(X)

 \Rightarrow : obvious

 $\Leftarrow: Y_1, Y_2 \in \chi_R \text{ implies } Y_1 \cap Y_2 \in \chi_R \text{ as } R \text{ is preserved by min.}$

$\mathbf{1} \Rightarrow \mathbf{2}$

Pp-definition

$$\mathsf{R}(\mathsf{a}_1,\ldots,\mathsf{a}_n)\leftrightarrow \bigwedge_{X\colon X=\{i_1,\ldots,i_k\}\subseteq [n]}\bigwedge_{j\colon j\in cl(X)}\mathsf{S}_{11\ldots 10}(\mathsf{a}_{i_1},\ldots,\mathsf{a}_{i_k},\mathsf{a}_j)$$

Pp-definition

$$\mathsf{R}(\mathsf{a}_1,\ldots,\mathsf{a}_n)\leftrightarrow \bigwedge_{X\colon X=\{i_1,\ldots,i_k\}\subseteq [n]}\bigwedge_{j\colon j\in cl(X)}\mathsf{S}_{11\ldots 10}(\mathsf{a}_{i_1},\ldots,\mathsf{a}_{i_k},\mathsf{a}_j)$$

Correctness proof

 $\Rightarrow: \mbox{ Consider } X \subseteq [n] \mbox{ s.t. } a_{i_1} = \cdots = a_{i_k} = 1. \mbox{ Then, } X \subseteq \chi_{\bf a} \mbox{ and } also \mbox{ cl}(X) \subseteq \mbox{ cl}(\chi_{\bf a}). \mbox{ By the claim, } \mbox{ cl}(\chi_{\bf a}) = \chi_{\bf a}. \mbox{ Thus, } a_j = 1. \mbox{ } \Leftarrow: \mbox{ If } {\bf a} \not\in R, \mbox{ then } \exists j \in \mbox{ cl}(\chi_{\bf a}) \setminus \chi_{\bf a}. \mbox{ So, for } X = \chi_{\bf a}, \mbox{ the corresponding atomic formula on the right hand side will not hold. } \label{eq:classical_static_$

$\mathbf{1} \Rightarrow \mathbf{2}$

Case when $[n] \notin R$

We have to define the "closure" differently. For all $X\in [n]$ s.t. there is $Y\in \chi_R$ containing X, we put

$$\mathsf{cl}(\mathsf{X}) := igcap_{\mathsf{Y}\colon\mathsf{X}\subseteq\mathsf{Y},\mathsf{Y}\in\chi_{\mathsf{R}}}\mathsf{Y}$$

and cl(X) := [n] otherwise. Note that the claim still holds.

Case when $[n] \notin R$

We have to define the "closure" differently. For all $X\in [n]$ s.t. there is $Y\in \chi_R$ containing X, we put

$$\mathsf{cl}(\mathsf{X}) := \bigcap_{\mathsf{Y}: \; \mathsf{X} \subseteq \mathsf{Y}, \mathsf{Y} \in \chi_{\mathsf{R}}} \mathsf{Y}$$

and $\mathsf{cl}(X):=[n]$ otherwise. Note that the claim still holds.

Pp-definition

$$\begin{split} & \text{For } \mathbf{a} = (a_1, \dots, a_n), \\ & \text{R}(\mathbf{a}) \leftrightarrow S_{1 \dots 1}(\mathbf{a}) \wedge \bigwedge_{X \colon X = \{i_1, \dots, i_k\} \subseteq [n]} \bigwedge_{j \colon j \in cl(X)} S_{11 \dots 10}(a_{i_1}, \dots, a_{i_k}, a_j) \end{split}$$

CSPs over the integers

Definition

Succ = {(x, y):
$$x + 1 = y$$
}.
 $\cdots \longrightarrow -2 \longrightarrow -1 \longrightarrow 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow \cdots$

Definition

Succ = {(x, y):
$$x + 1 = y$$
}.

 $\cdots \longrightarrow -2 \longrightarrow -1 \longrightarrow 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow \cdots$

Observation

 $(\mathbb{Z},Succ)$ is not $\omega\text{-categorical}$ as there are infinitely many 2-orbits: $O_n=\{(x,y)\colon x+n=y\}$ for $n\in\mathbb{Z}.$

Definition

Succ = {(x, y):
$$x + 1 = y$$
}.

 $\cdots \longrightarrow -2 \longrightarrow -1 \longrightarrow 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow \cdots$

Observation

 $(\mathbb{Z},Succ)$ is not $\omega\text{-categorical}$ as there are infinitely many 2-orbits: $O_n=\{(x,y)\colon x+n=y\}$ for $n\in\mathbb{Z}.$

Proposition

There is a sentence Φ in monotone connected SNP that describes $\mathsf{CSP}(\mathbb{Z},\mathsf{Succ}).$

 Φ existentially quantifies two binary relations Tc and Eq s.t.

 \blacksquare Tc contains Succ: $\mathsf{Succ}(x,y) \to \mathsf{Tc}(x,y)$

 Φ existentially quantifies two binary relations Tc and Eq s.t.

- \blacksquare Tc contains Succ: $\mathsf{Succ}(x,y) \to \mathsf{Tc}(x,y)$
- \blacksquare Tc is irreflexive: $\neg Tc(x,x),$ and transitive: $Tc(x,y) \land Tc(y,z) \rightarrow Tc(x,z)$

- Φ existentially quantifies two binary relations Tc and Eq s.t.
 - \blacksquare Tc contains Succ: $\mathsf{Succ}(x,y) \to \mathsf{Tc}(x,y)$
 - \blacksquare Tc is irreflexive: $\neg Tc(x,x),$ and transitive: $Tc(x,y) \land Tc(y,z) \rightarrow Tc(x,z)$
 - \blacksquare Eq is an equivalence relation: reflexive, symmetric: Eq(x,y) \to Eq(y,x), and transitive

- Φ existentially quantifies two binary relations Tc and Eq s.t.
 - \blacksquare Tc contains Succ: Succ(x,y) \rightarrow Tc(x,y)
 - Tc is irreflexive: $\neg Tc(x,x)$, and transitive: $Tc(x,y) \land Tc(y,z) \rightarrow Tc(x,z)$
 - \blacksquare Eq is an equivalence relation: reflexive, symmetric: Eq(x, y) \to Eq(y, x), and transitive
 - The classes of Eq contain vertices on the "same level": Eq(v, w) \land Succ(v, x) \land Succ(w, y) \rightarrow Eq(x, y), and Eq(v, w) \land Succ(x, v) \land Succ(y, w) \rightarrow Eq(x, y)

- Φ existentially quantifies two binary relations Tc and Eq s.t.
 - \blacksquare Tc contains Succ: $\mathsf{Succ}(x,y) \to \mathsf{Tc}(x,y)$
 - Tc is irreflexive: $\neg Tc(x,x)$, and transitive: $Tc(x,y) \land Tc(y,z) \rightarrow Tc(x,z)$
 - \blacksquare Eq is an equivalence relation: reflexive, symmetric: Eq(x, y) \to Eq(y, x), and transitive
 - The classes of Eq contain vertices on the "same level": Eq(v, w) \land Succ(v, x) \land Succ(w, y) \rightarrow Eq(x, y), and Eq(v, w) \land Succ(x, v) \land Succ(y, w) \rightarrow Eq(x, y)
 - \blacksquare Elements on the "same level" agree wrt Tc: $\mathsf{Tc}(x,y) \wedge \mathsf{Eq}(y,z) \to \mathsf{Tc}(x,z)$

In particular, we forbid the same Eq-class to contain a Tc pair.

- If there exists a homomorphism $h: \mathbf{G} \to (\mathbb{Z}, Succ)$, then interpret Eq as: Eq(x, y) $\leftrightarrow (h(x) = h(y))$, and put Tc to be minimal by inclusion.
- If there is a valid interpretation of Eq and Tc in G, then G/Eq is the disjoint union of finitely many directed paths without loops, then G/Eq → (Z, Succ), and so does G.

References

P. Erdős

Graph Theory and Probability Canadian Journal of Mathematics, 1959, 10.4153/CJM-1959-003-9

 W. F. Dowling and J. H. Gallier Linear-time algorithms for testing the satisfiability of propositional Horn formulae The Journal of Logic Programming, 1984, 10.1016/0743-1066(84)90014-1

► Tomás Feder and Moshe Y. Vardi

The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory *SIAM J. Comput.*, 1998, 10.1137/S0097539794266766

References

Libor Barto and Jakub Opršal and Michael Pinsker The wonderland of reflections Israel Journal of Mathematics, 2018, 10.1007/s11856-017-1621-9

Dmitriy Zhuk A Proof of the CSP Dichotomy Conjecture J. ACM, 2020, 10.1145/3402029

Manuel Bodirsky and Florent R. Madelaine and Antoine Mottet A Proof of the Algebraic Tractability Conjecture for Monotone Monadic SNP

SIAM J. Comput., 2021, 10.1137/19M128466X