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Monotone Monadic SNP without Inequality

The MMSNP logic consists of ESO sentences of the form

X1, .. Xs W, xn \ (i A B A i), where
i=1

every «; is a conjunction of input atomic formulas,

every (3; is a conjunction of existential atomic formulas,
every ¢ is a conjunction of inequalities (x; # X;),

all atomic formulas of «; must be non-negated (monotone),

all existential relations Xy, ..., Xs have arity 1 (monadic),

every ¢; is empty (without inequality).
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Complexity

Every MMSNP is either in P or NP-complete if and only if every
connected MMSNP is in P or NP-complete.
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Complexity

Lemma

Every MMSNP is either in P or NP-complete if and only if every
connected MMSNP is in P or NP-complete.

Theorem ([FV'98

For every connected MMSNP problem there exists a p-time
equivalent finite CSP.

Corollary ([Zhuk
MMSNP has a “P vs NP-complete” dichotomy.
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An equivalent definition

Let F be a finite family of finite structures over a signature 7 Ll o,
where 0 := {M1(-),...,Ms(:)} is a “set of colors".

Forbhom (F)

INSTANCE: A finite T-structure A.

QUESTION: Can we color each element of A with some color
from o such that for all F in F there is no homomorphism from F
to the resulting o-expansion A%7?

Lemma

For every MMSNP sentence & there is a family F such that
A = @ if and only if A € Forbpom(F) for every finite structure A.

MMSNP 6/29



Example

No Monochromatic Triangle

®)

Given a graph G, color its
vertices with 2 colors so that the
result omits the two following
subgraphs.

VANRVAN
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MMSNP reduces to finite CSP

m Replace every triangle of the
input graph G with a
relational triple.

m The original graph G is a
YES instance iff the
resulting structure S maps
to T, where T is as follows.

MMSNP

AVA

XeX

/

\



The other direction

Naive approach
m Replace every relational
triple of S with a triangle.

m Check if the resulting graph
G satisfies the MMSNP
sentence.

Obstacle

What to do when S contains
implicit triangles?

Reason

S has cycles of length < 3.

MMSNP
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Solution

Lemma [Erdos'59

For given S, T, and £ > 0 there
is S’ such that
mS—>TiffS = T;

m S’ has no cycles of length
less than £.

S/

MMSNP 11/29



Solution

Construction of S’

m Replace every vertex of S
with a “bag” of size N.

m For every relational triple of S’
S, uniformly randomly
distribute N1*¢ triples on

the corresponding three bags
in S'. ——
K J

m Remove relational tuples A A JJU
until there are no cycles of
length < £.
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Solution

m By construction, S’ — S.

m The number of cycles of
length < £ is small: O(N<),
so we need to remove O(N)
tuples to get rid of them.

m If S’ — T, then each “bag”

of size N contains at least
% vertices that are mapped

to the same vertex in T.
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Solution

m As tuples are distributed
uniformly randomly, even
after removing O(N) of S/
them, there still are tuples
induced on these smaller
“subbags”.
m If we map every vertex of S
where the corresponding
“subbag” is mapped, then it
will be a homomorphism.
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Why is it important?

Lemma [BMM'2021

For every ® in MMSNP there is an w-categorical structure Cj
such that

m for every finite A, we have A |= @ iff A — CF,

m there is a one-to-one correspondence between 1-orbits of Cj
and the elements of T,

m consequently, every canonical polymorphism of Cg induces a
polymorphism of T.
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Why is it important?

Lemma [BMM'2021

For every ® in MMSNP there is an w-categorical structure Cj
such that

m for every finite A, we have A |= @ iff A — CF,

m there is a one-to-one correspondence between 1-orbits of Cj
and the elements of T,

m consequently, every canonical polymorphism of Cg induces a
polymorphism of T.

Theorem ([BMM'2021

If Co has a non-trivial canonical polymorphism, then so does T.
Then, CSP(T) is in P [Zhuk] as well as ®.

If all canonical polymorphisms of Cg are trivial, then so are all the
polymorphisms. Then, CSP(Cg) is NP-complete by [BOP'2018].
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The problem

A propositional formula in conjunctive normal form is called Horn
if each clause is a Horn clause, i.e., has at most one positive literal.

(x1 V =ix2 V x3) A (=xa V x5) A (= V =7 V —xg) A (xg)
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The problem

Definition
A propositional formula in conjunctive normal form is called Horn
if each clause is a Horn clause, i.e., has at most one positive literal.

Example

(x1 V =ix2 V x3) A (=xa V x5) A (= V =7 V —xg) A (xg)

Horn-SAT

INSTANCE: A propositional Horn formula.
QUESTION: Is there a Boolean assignment for the variables such
that in each clause at least one literal is true?

Complexity
Linear in the size of the input [DG'84]
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An equivalent CSP

m Denote Cp := {0} and Cy := {1}.
m Foray,...,ax €{0,1}, S, 5 = {0, 1}k \ (a1, ..., ak).

All S11..10 and Sy1.1 are pp-definable in Cg, C1, and H := Sq1o.
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An equivalent CSP

m Denote Cp := {0} and Cy := {1}.
m Foray,...,ax €{0,1}, S, 5 = {0, 1R\ (ag, ..., aK).

Proposition

All S11..10 and Sy1.1 are pp-definable in Cg, C1, and H := Sq1o.

m So(x) <> C1(x). Sio(x1,%2) <> H(x1, x1,x%2).

® S11.10(X1, -5 Xm) <> 3y3, .., Ym—1 H(X1,%2,¥3)
AH(y3,x3,y4) A -+ A H(Ym—1,Xm—1,%Xm).

[ ] 511”.1(X1, - ,Xm) — Ely 311”.10(X1, - ,xm,y) A Co(y).
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An equivalent CSP

m Denote Cp := {0} and C; := {1}.
m Forajy,...,ax €{0,1}, S, 5, = {0, 13K\ (a1, ..., aK).

All 511._10 and 511._.1 are pp-definable in Co, C]_, and H := 5110.

Corollary

Let A := ({0,1}; Co, C1,H). Then Horn-SAT ~, CSP(A).
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Algebraic properties of Horn-SAT

A mapping min: {0,1}2 — {0, 1} is called binary minimum if
min(0,0) = min(0,1) = min(1,0) = 0 and min(1,1) = 1.
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Algebraic properties of Horn-SAT

Definition

A mapping min: {0,1}? — {0, 1} is called binary minimum if
min(0,0) = min(0,1) = min(1,0) = 0 and min(1,1) = 1.

Proposition

For any relation R C {0,1}", TFAE:
R is preserved by min.
R is pp-definable in A.

2=1

First, prove for any mapping f and any relations Ry, Ra: if Ry is
pp-definable in Ry and f preserves Ry, then f preserves Ry. Then
check that min preserves Cp, C1, H.

Horn-SAT
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1=2

For [n]:={1,...,n} and a € {0,1}", put xa :={i € [n]: 3y =1}
and xr := {xa: a € R}.

Case when [n] € xr

For X C [n], define its “closure”

dX)== (] VY

Y: XCY,Yexr

It is the meet of all relational tuples above X. It is non-empty
because [n] € xr.
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1=2

For [n] :={1,...,n} and a € {0,1}", put xa :={i € [n]: aj =1}
and xr := {xa: a € R}.

Case when [n] € xr

For X C [n], define its “closure”

dX)== (] VY

Y: XCY,Yexr

It is the meet of all relational tuples above X. It is non-empty
because [n] € xr.

Claim: X € xr iff X = cl(X)

= obvious
<: Y1,Y2 € xgr implies Y1 MY, € xR as R is preserved by min.
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1=2

Pp-definition

R(al,...,an) <> /\ /\ 511_,,10(311,...,a;k,aj)

X: X={i1,...,ik }C[n] j: jecl(X)
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1=2

Pp-definition

R(al,...,an) <> /\ /\ 511,,,10(311,...,a;k,aj)

X X={i1,..,ik}C[n] j: jecl(X)

Correctness proof

=: Consider X C [n] s.t. aj, =--- =aj, = 1. Then, X C x5, and
also cl(X) C cl(xa). By the claim, cl(xa) = Xa. Thus, a; = 1.

<: Ifa¢ R, then Jj € cl(xa) \ Xa- So, for X = xa, the
corresponding atomic formula on the right hand side will not hold.
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1=2

Case when [n] € R

We have to define the “closure” differently. For all X € [n] s.t.
there is Y € xr containing X, we put

dX):= (] VY

Y: XCY,YExr

and cl(X) := [n] otherwise. Note that the claim still holds.
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Case when [n] € R

We have to define the “closure” differently. For all X € [n] s.t.
there is Y € xr containing X, we put

dX):= (] VY

Y: XCY,YExr
and cl(X) := [n] otherwise. Note that the claim still holds.

Pp-definition

Fora=(ai,...,an),

R(a) <> S1..1(a) A /\ /\ S11..10(ai;, - - -5 @iy, 3j)

X: X={it,.,i}C[n] i+ jecl(X)

Horn-SAT 23/29
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(Z, Succ)

Succ = {(x,y): x+ 1 =y}.

-2 -1 0 1 2

(Z, Succ) is not w-categorical as there are infinitely many 2-orbits:
On ={(x,y): x+n=y} forneZ.

Proposition

There is a sentence ® in monotone connected SNP that describes
CSP(Z, Succ).
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Proof

® existentially quantifies two binary relations Tc and Eq s.t.

m Tc contains Succ: Succ(x,y) — Tc(x,y)
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Proof

® existentially quantifies two binary relations Tc and Eq s.t.
m Tc contains Succ: Succ(x,y) — Tc(x,y)
m Tcis irreflexive: =Tc(x,x), and transitive:
Te(x,y) A Te(y,z) — Te(x,z)
m Eq is an equivalence relation: reflexive, symmetric:
Eq(x,y) — Eq(y,x), and transitive

m The classes of Eq contain vertices on the “same level”:
Eq(v,w) A Succ(v,x) A Succ(w,y) — Eq(x,y), and
Eq(v,w) A Succ(x,v) A Succ(y,w) — Eq(x,y)

m Elements on the “same level” agree wrt Tc:

Tc(x,y) A Eq(y,z) — Te(x,z)

In particular, we forbid the same Eq-class to contain a Tc pair.
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Proof

m If there exists a homomorphism h: G — (Z, Succ), then
interpret Eq as: Eq(x,y) <+ (h(x) = h(y)), and put Tc to be
minimal by inclusion.

m If there is a valid interpretation of Eq and Tc in G, then
G/Eq is the disjoint union of finitely many directed paths
without loops, then G/Eq — (Z Succ), and so does G.

G/Eq

5
CSPs over the integers 27/29



References

» P. Erdds
Graph Theory and Probability
Canadian Journal of Mathematics, 1959, 10.4153/CJM-1959-003-9

» W. F. Dowling and J. H. Gallier
Linear-time algorithms for testing the satisfiability of propositional Horn

formulae
The Journal of Logic Programming, 1984, 10.1016,/0743-1066(84)90014-1

» Tomds Feder and Moshe Y. Vardi
The Computational Structure of Monotone Monadic SNP and Constraint
Satisfaction: A Study through Datalog and Group Theory
SIAM J. Comput., 1998, 10.1137/S0097539794266766

CSPs over the integers 28/29



References

» Libor Barto and Jakub Opr3al and Michael Pinsker
The wonderland of reflections
Israel Journal of Mathematics, 2018, 10.1007/s11856-017-1621-9

» Dmitriy Zhuk
A Proof of the CSP Dichotomy Conjecture
J. ACM, 2020, 10.1145/3402029

» Manuel Bodirsky and Florent R. Madelaine and Antoine Mottet
A Proof of the Algebraic Tractability Conjecture for Monotone Monadic
SNP
SIAM J. Comput., 2021, 10.1137/19M128466X

CSPs over the integers 29/29



	MMSNP
	Horn-SAT
	CSPs over the integers

