MMSNP and examples

Alexey Barsukov

19 July 2023

Table of Contents

1 MMSNP

2 Horn-SAT

3 CSPs over the integers

MMSNP

Monotone Monadic SNP without Inequality

Definition

The MMSNP logic consists of ESO sentences of the form

$$
\exists \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{s}} \forall \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \bigwedge_{\mathrm{i}=1}^{\mathrm{m}} \neg\left(\alpha_{\mathrm{i}} \wedge \beta_{\mathrm{i}} \wedge \varepsilon_{\mathrm{i}}\right) \text {, where }
$$

Monotone Monadic SNP without Inequality

Definition

The MMSNP logic consists of ESO sentences of the form

$$
\exists \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{s}} \forall \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \bigwedge_{\mathrm{i}=1}^{\mathrm{m}} \neg\left(\alpha_{\mathrm{i}} \wedge \beta_{\mathrm{i}} \wedge \varepsilon_{\mathrm{i}}\right) \text {, where }
$$

■ every α_{i} is a conjunction of input atomic formulas,

Monotone Monadic SNP without Inequality

Definition

The MMSNP logic consists of ESO sentences of the form

$$
\exists \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{s}} \forall \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \bigwedge_{\mathrm{i}=1}^{\mathrm{m}} \neg\left(\alpha_{\mathrm{i}} \wedge \beta_{\mathrm{i}} \wedge \varepsilon_{\mathrm{i}}\right) \text {, where }
$$

■ every α_{i} is a conjunction of input atomic formulas,
■ every β_{i} is a conjunction of existential atomic formulas,

Monotone Monadic SNP without Inequality

Definition

The MMSNP logic consists of ESO sentences of the form

$$
\exists \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{s}} \forall \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \bigwedge_{\mathrm{i}=1}^{\mathrm{m}} \neg\left(\alpha_{\mathrm{i}} \wedge \beta_{\mathrm{i}} \wedge \varepsilon_{\mathrm{i}}\right) \text {, where }
$$

■ every α_{i} is a conjunction of input atomic formulas,
■ every β_{i} is a conjunction of existential atomic formulas,
■ every ε_{i} is a conjunction of inequalities $\left(\mathrm{x}_{\mathrm{i}} \neq \mathrm{x}_{\mathrm{j}}\right)$,

Monotone Monadic SNP without Inequality

Definition

The MMSNP logic consists of ESO sentences of the form

$$
\exists \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{s}} \forall \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \bigwedge_{\mathrm{i}=1}^{\mathrm{m}} \neg\left(\alpha_{\mathrm{i}} \wedge \beta_{\mathrm{i}} \wedge \varepsilon_{\mathrm{i}}\right), \text { where }
$$

■ every α_{i} is a conjunction of input atomic formulas,
■ every β_{i} is a conjunction of existential atomic formulas,
■ every ε_{i} is a conjunction of inequalities $\left(\mathrm{x}_{\mathrm{i}} \neq \mathrm{x}_{\mathrm{j}}\right)$,
■ all atomic formulas of α_{i} must be non-negated (monotone),

Monotone Monadic SNP without Inequality

Definition

The MMSNP logic consists of ESO sentences of the form

$$
\exists \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{s}} \forall \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \bigwedge_{\mathrm{i}=1}^{\mathrm{m}} \neg\left(\alpha_{\mathrm{i}} \wedge \beta_{\mathrm{i}} \wedge \varepsilon_{\mathrm{i}}\right), \text { where }
$$

■ every α_{i} is a conjunction of input atomic formulas,

- every β_{i} is a conjunction of existential atomic formulas,

■ every ε_{i} is a conjunction of inequalities $\left(\mathrm{x}_{\mathrm{i}} \neq \mathrm{x}_{\mathrm{j}}\right)$,

- all atomic formulas of α_{i} must be non-negated (monotone),
- all existential relations X_{1}, \ldots, X_{s} have arity 1 (monadic),

Monotone Monadic SNP without Inequality

Definition

The MMSNP logic consists of ESO sentences of the form

$$
\exists \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{s}} \forall \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \bigwedge_{\mathrm{i}=1}^{\mathrm{m}} \neg\left(\alpha_{\mathrm{i}} \wedge \beta_{\mathrm{i}} \wedge \varepsilon_{\mathrm{i}}\right) \text {, where }
$$

■ every α_{i} is a conjunction of input atomic formulas,

- every β_{i} is a conjunction of existential atomic formulas,

■ every ε_{i} is a conjunction of inequalities $\left(\mathrm{x}_{\mathrm{i}} \neq \mathrm{x}_{\mathrm{j}}\right)$,

- all atomic formulas of α_{i} must be non-negated (monotone),
- all existential relations X_{1}, \ldots, X_{s} have arity 1 (monadic),

■ every ε_{i} is empty (without inequality).

Complexity

Lemma

Every MMSNP is either in P or NP-complete if and only if every connected MMSNP is in P or NP-complete.

Complexity

Lemma

Every MMSNP is either in P or NP-complete if and only if every connected MMSNP is in P or NP-complete.

Theorem ([FV'98])

For every connected MMSNP problem there exists a p-time equivalent finite CSP.

Complexity

Lemma

Every MMSNP is either in P or NP-complete if and only if every connected MMSNP is in P or NP-complete.

Theorem ([FV'98])

For every connected MMSNP problem there exists a p-time equivalent finite CSP.

Corollary ([Zhuk])

MMSNP has a " P vs NP-complete" dichotomy.

An equivalent definition

Let \mathcal{F} be a finite family of finite structures over a signature $\tau \sqcup \sigma$, where $\sigma:=\left\{\mathrm{M}_{1}(\cdot), \ldots, \mathrm{M}_{\mathrm{s}}(\cdot)\right\}$ is a "set of colors".

Forb $_{\text {hom }}(\mathcal{F})$

INSTANCE: A finite τ-structure A.
QUESTION: Can we color each element of \mathbf{A} with some color from σ such that for all \mathbf{F} in \mathcal{F} there is no homomorphism from \mathbf{F} to the resulting σ-expansion \mathbf{A}^{σ} ?

Lemma

For every MMSNP sentence Φ there is a family \mathcal{F} such that $\mathbf{A} \equiv \Phi$ if and only if $\mathbf{A} \in \operatorname{Forb}_{\text {hom }}(\mathcal{F})$ for every finite structure \mathbf{A}.

Example

No Monochromatic Triangle

Given a graph \mathbf{G}, color its vertices with 2 colors so that the result omits the two following subgraphs.

Example

No Monochromatic Triangle

Given a graph \mathbf{G}, color its vertices with 2 colors so that the result omits the two following subgraphs.

MMSNP reduces to finite CSP

- Replace every triangle of the input graph \mathbf{G} with a relational triple.
- The original graph \mathbf{G} is a YES instance iff the resulting structure \mathbf{S} maps to \mathbf{T}, where \mathbf{T} is as follows.

T

The other direction

Naive approach

- Replace every relational triple of \mathbf{S} with a triangle.
- Check if the resulting graph G satisfies the MMSNP sentence.

Obstacle

What to do when \mathbf{S} contains implicit triangles?

Reason

\mathbf{S} has cycles of length ≤ 3.

Solution

Lemma [Erdős'59]

For given \mathbf{S}, \mathbf{T}, and $\ell>0$ there is \mathbf{S}^{\prime} such that
$■ \mathbf{S} \rightarrow \mathbf{T}$ iff $\mathbf{S}^{\prime} \rightarrow \mathbf{T}$;

- \mathbf{S}^{\prime} has no cycles of length less than ℓ.

Solution

Construction of \mathbf{S}^{\prime}

- Replace every vertex of \mathbf{S} with a "bag" of size N.
- For every relational triple of S, uniformly randomly distribute $\mathrm{N}^{1+\epsilon}$ triples on the corresponding three bags in \mathbf{S}^{\prime}.
- Remove relational tuples until there are no cycles of length $<\ell$.

Solution

Proof

■ By construction, $\mathbf{S}^{\prime} \rightarrow \mathbf{S}$.

- The number of cycles of length $<\ell$ is small: $\mathrm{O}\left(\mathrm{N}^{\epsilon \ell}\right)$, so we need to remove $\mathrm{O}(\mathrm{N})$ tuples to get rid of them.
- If $\mathbf{S}^{\prime} \rightarrow \mathbf{T}$, then each "bag" of size N contains at least $\frac{\mathrm{N}}{|\mathrm{T}|}$ vertices that are mapped to the same vertex in \mathbf{T}.

Solution

Proof

- As tuples are distributed uniformly randomly, even after removing $\mathrm{O}(\mathrm{N})$ of them, there still are tuples induced on these smaller "subbags".
- If we map every vertex of \mathbf{S} where the corresponding "subbag" is mapped, then it
 will be a homomorphism.

Why is it important?

Lemma [BMM'2021]

For every Φ in MMSNP there is an ω-categorical structure \mathbf{C}_{Φ}^{τ} such that

■ for every finite \mathbf{A}, we have $\mathbf{A} \models \Phi$ iff $\mathbf{A} \rightarrow \mathbf{C}_{\Phi}^{\tau}$,

- there is a one-to-one correspondence between 1-orbits of \mathbf{C}_{Φ}^{τ} and the elements of \mathbf{T},
- consequently, every canonical polymorphism of \mathbf{C}_{Φ} induces a polymorphism of \mathbf{T}.

Why is it important?

Lemma [BMM'2021]

For every Φ in MMSNP there is an ω-categorical structure \mathbf{C}_{Φ}^{τ} such that

■ for every finite \mathbf{A}, we have $\mathbf{A} \models \Phi$ iff $\mathbf{A} \rightarrow \mathbf{C}_{\Phi}^{\tau}$,

- there is a one-to-one correspondence between 1-orbits of \mathbf{C}_{Φ}^{τ} and the elements of \mathbf{T},
- consequently, every canonical polymorphism of \mathbf{C}_{Φ} induces a polymorphism of \mathbf{T}.

Theorem ([BMM'2021])

If \mathbf{C}_{Φ} has a non-trivial canonical polymorphism, then so does \mathbf{T}.
Then, $\operatorname{CSP}(\mathbf{T})$ is in P [Zhuk] as well as Φ.
If all canonical polymorphisms of \mathbf{C}_{Φ} are trivial, then so are all the polymorphisms. Then, $\operatorname{CSP}\left(\mathbf{C}_{\Phi}\right)$ is NP-complete by [BOP'2018].

Horn-SAT

The problem

Definition

A propositional formula in conjunctive normal form is called Horn if each clause is a Horn clause, i.e., has at most one positive literal.

Example

$$
\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{6} \vee \neg x_{7} \vee \neg x_{8}\right) \wedge\left(x_{9}\right)
$$

The problem

Definition

A propositional formula in conjunctive normal form is called Horn if each clause is a Horn clause, i.e., has at most one positive literal.

Example

$$
\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{6} \vee \neg x_{7} \vee \neg x_{8}\right) \wedge\left(x_{9}\right)
$$

Horn-SAT

INSTANCE: A propositional Horn formula.
QUESTION: Is there a Boolean assignment for the variables such that in each clause at least one literal is true?

Complexity

Linear in the size of the input [DG'84]

An equivalent CSP

- Denote $C_{0}:=\{0\}$ and $C_{1}:=\{1\}$.
$■$ For $a_{1}, \ldots, a_{k} \in\{0,1\}, \mathrm{S}_{\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{k}}}:=\{0,1\}^{\mathrm{k}} \backslash\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)$.

Proposition

All $S_{11 \ldots 10}$ and $S_{11 \ldots 1}$ are pp-definable in C_{0}, C_{1}, and $H:=S_{110}$.

An equivalent CSP

- Denote $C_{0}:=\{0\}$ and $C_{1}:=\{1\}$.
$■$ For $a_{1}, \ldots, a_{k} \in\{0,1\}, \mathrm{S}_{\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{k}}}:=\{0,1\}^{\mathrm{k}} \backslash\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)$.

Proposition

All $S_{11 \ldots 10}$ and $S_{11 \ldots 1}$ are pp-definable in C_{0}, C_{1}, and $H:=S_{110}$.
Proof
$\square \mathrm{S}_{0}(\mathrm{x}) \leftrightarrow \mathrm{C}_{1}(\mathrm{x}) . \mathrm{S}_{10}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \leftrightarrow \mathrm{H}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)$.

An equivalent CSP

- Denote $C_{0}:=\{0\}$ and $C_{1}:=\{1\}$.
$■$ For $a_{1}, \ldots, a_{k} \in\{0,1\}, \mathrm{S}_{\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{k}}}:=\{0,1\}^{\mathrm{k}} \backslash\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)$.

Proposition

All $S_{11 \ldots 10}$ and $S_{11 \ldots 1}$ are pp-definable in C_{0}, C_{1}, and $H:=S_{110}$.
Proof
■ $\mathrm{S}_{0}(\mathrm{x}) \leftrightarrow \mathrm{C}_{1}(\mathrm{x}) . \mathrm{S}_{10}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \leftrightarrow \mathrm{H}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)$.
■ $\mathrm{S}_{11 \ldots 10}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right) \leftrightarrow \exists \mathrm{y}_{3}, \ldots, \mathrm{y}_{\mathrm{m}-1} \mathrm{H}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{3}\right)$ $\wedge H\left(y_{3}, x_{3}, y_{4}\right) \wedge \cdots \wedge H\left(y_{m-1}, x_{m-1}, x_{m}\right)$.

An equivalent CSP

- Denote $C_{0}:=\{0\}$ and $C_{1}:=\{1\}$.
$■$ For $a_{1}, \ldots, a_{k} \in\{0,1\}, \mathrm{S}_{\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{k}}}:=\{0,1\}^{\mathrm{k}} \backslash\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)$.

Proposition

All $S_{11 \ldots 10}$ and $S_{11 \ldots 1}$ are pp-definable in C_{0}, C_{1}, and $H:=S_{110}$.

Proof

■ $\mathrm{S}_{0}(\mathrm{x}) \leftrightarrow \mathrm{C}_{1}(\mathrm{x}) . \mathrm{S}_{10}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \leftrightarrow \mathrm{H}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)$.
■ $S_{11 \ldots 10}\left(x_{1}, \ldots, x_{m}\right) \leftrightarrow \exists y_{3}, \ldots, y_{m-1} H\left(x_{1}, x_{2}, y_{3}\right)$ $\wedge H\left(y_{3}, x_{3}, y_{4}\right) \wedge \cdots \wedge H\left(y_{m-1}, x_{m-1}, x_{m}\right)$.

- $S_{11 \ldots 1}\left(x_{1}, \ldots, x_{m}\right) \leftrightarrow \exists y S_{11 \ldots 10}\left(x_{1}, \ldots, x_{m}, y\right) \wedge C_{0}(y)$.

An equivalent CSP

- Denote $C_{0}:=\{0\}$ and $C_{1}:=\{1\}$.
$■$ For $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}} \in\{0,1\}, \mathrm{S}_{\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{k}}}:=\{0,1\}^{\mathrm{k}} \backslash\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)$.

Proposition

All $S_{11 \ldots 10}$ and $S_{11 \ldots 1}$ are pp-definable in C_{0}, C_{1}, and $H:=S_{110}$.

Corollary

Let $\mathbf{A}:=\left(\{0,1\} ; \mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{H}\right)$. Then Horn-SAT $\sim_{p} \operatorname{CSP}(\mathbf{A})$.

Algebraic properties of Horn-SAT

Definition

A mapping min: $\{0,1\}^{2} \rightarrow\{0,1\}$ is called binary minimum if $\min (0,0)=\min (0,1)=\min (1,0)=0$ and $\min (1,1)=1$.

Algebraic properties of Horn-SAT

Definition

A mapping min: $\{0,1\}^{2} \rightarrow\{0,1\}$ is called binary minimum if $\min (0,0)=\min (0,1)=\min (1,0)=0$ and $\min (1,1)=1$.

Proposition

For any relation $\mathrm{R} \subseteq\{0,1\}^{\mathrm{n}}$, TFAE:
$1 R$ is preserved by min.
2 R is pp-definable in \mathbf{A}.

Algebraic properties of Horn-SAT

Definition

A mapping min: $\{0,1\}^{2} \rightarrow\{0,1\}$ is called binary minimum if $\min (0,0)=\min (0,1)=\min (1,0)=0$ and $\min (1,1)=1$.

Proposition

For any relation $\mathrm{R} \subseteq\{0,1\}^{\mathrm{n}}$, TFAE:
$1 R$ is preserved by min.
2 R is pp-definable in \mathbf{A}.

$2 \Rightarrow 1$

First, prove for any mapping f and any relations R_{1}, R_{2} : if R_{2} is pp-definable in R_{1} and f preserves R_{1}, then f preserves R_{2}. Then check that min preserves $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{H}$.

For $[\mathrm{n}]:=\{1, \ldots, \mathrm{n}\}$ and $\mathbf{a} \in\{0,1\}^{\mathrm{n}}$, put $\chi_{\mathbf{a}}:=\left\{\mathrm{i} \in[\mathrm{n}]: \mathrm{a}_{\mathrm{i}}=1\right\}$ and $\chi_{\mathrm{R}}:=\left\{\chi_{\mathbf{a}}: \mathbf{a} \in \mathrm{R}\right\}$.

Case when $[\mathrm{n}] \in \chi_{\mathrm{R}}$

For $\mathrm{X} \subseteq[\mathrm{n}]$, define its "closure"

$$
c l(X):=\bigcap_{Y: X \subseteq Y, Y \in \chi_{R}} Y
$$

It is the meet of all relational tuples above X . It is non-empty because $[\mathrm{n}] \in \chi_{\mathrm{R}}$.

For $[\mathrm{n}]:=\{1, \ldots, \mathrm{n}\}$ and $\mathbf{a} \in\{0,1\}^{\mathrm{n}}$, put $\chi_{\mathbf{a}}:=\left\{\mathrm{i} \in[\mathrm{n}]: \mathrm{a}_{\mathrm{i}}=1\right\}$ and $\chi_{\mathrm{R}}:=\left\{\chi_{\mathbf{a}}: \mathbf{a} \in \mathrm{R}\right\}$.

Case when $[\mathrm{n}] \in \chi_{\mathrm{R}}$

For $X \subseteq[n]$, define its "closure"

$$
c l(X):=\bigcap_{Y: X \subseteq Y, Y \in \chi_{R}} Y
$$

It is the meet of all relational tuples above X . It is non-empty because $[\mathrm{n}] \in \chi_{\mathrm{R}}$.

Claim: $X \in \chi_{R}$ iff $X=c l(X)$

\Rightarrow : obvious
$\Leftarrow: Y_{1}, Y_{2} \in \chi_{\mathrm{R}}$ implies $\mathrm{Y}_{1} \cap \mathrm{Y}_{2} \in \chi_{\mathrm{R}}$ as R is preserved by min.

Pp-definition

$$
R\left(a_{1}, \ldots, a_{n}\right) \leftrightarrow \bigwedge_{x: X=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq[n] j: j \in c \mid(X)} S_{11 \ldots 10}\left(a_{i_{1}}, \ldots, a_{i_{k}}, a_{j}\right)
$$

Pp-definition

$$
\mathrm{R}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) \leftrightarrow \bigwedge_{\mathrm{X}: \mathrm{X}=\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right\} \subseteq[n] \mathrm{j}:} \bigwedge_{\mathrm{j} \in \mathrm{cl}(X)} \mathrm{S}_{11 \ldots 10}\left(\mathrm{a}_{\mathrm{i}_{1}}, \ldots, \mathrm{a}_{\mathrm{i}_{\mathrm{k}}}, \mathrm{a}_{\mathrm{j}}\right)
$$

Correctness proof

$\Rightarrow:$ Consider $X \subseteq[n]$ s.t. $a_{i_{1}}=\cdots=a_{i_{k}}=1$. Then, $X \subseteq \chi_{\mathbf{a}}$ and also $\mathrm{cl}(\mathrm{X}) \subseteq \mathrm{cl}\left(\chi_{\mathbf{a}}\right)$. By the claim, $\mathrm{cl}\left(\chi_{\mathbf{a}}\right)=\chi_{\mathbf{a}}$. Thus, $\mathrm{a}_{\mathrm{j}}=1$.
\Leftrightarrow : If $\mathbf{a} \notin \mathrm{R}$, then $\exists \mathrm{j} \in \mathrm{cl}\left(\chi_{\mathbf{a}}\right) \backslash \chi_{\mathbf{a}}$. So, for $\mathrm{X}=\chi_{\mathbf{a}}$, the corresponding atomic formula on the right hand side will not hold.

Case when $[\mathrm{n}] \notin \mathrm{R}$

We have to define the "closure" differently. For all $X \in[n]$ s.t. there is $Y \in \chi_{R}$ containing X, we put

$$
c l(X):=\bigcap_{Y: X \subseteq Y, Y \in \chi_{R}} Y
$$

and $\mathrm{cl}(\mathrm{X}):=[\mathrm{n}]$ otherwise. Note that the claim still holds.

Case when $[\mathrm{n}] \notin \mathrm{R}$

We have to define the "closure" differently. For all $X \in[n]$ s.t. there is $Y \in \chi_{R}$ containing X, we put

$$
c l(X):=\bigcap_{Y: X \subseteq Y, Y \in \chi_{R}} Y
$$

and $\mathrm{cl}(\mathrm{X}):=[\mathrm{n}]$ otherwise. Note that the claim still holds.

Pp-definition

For $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$,

$$
R(\mathbf{a}) \leftrightarrow S_{1 \ldots 1}(\mathbf{a}) \wedge \bigwedge_{X: X=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq[n] j:} \bigwedge_{j \in c l(X)} S_{11 \ldots 10}\left(a_{i_{1}}, \ldots, a_{i_{k}}, a_{j}\right)
$$

CSPs over the integers

$(\mathbb{Z}$, Succ $)$

Definition

Succ $=\{(x, y): x+1=y\}$.
$\cdots \longrightarrow-2 \longrightarrow-1 \longrightarrow 0 \longrightarrow$

$(\mathbb{Z}$, Succ $)$

Definition

Succ $=\{(x, y): x+1=y\}$.
$\cdots \longrightarrow-2 \longrightarrow-1 \longrightarrow 0 \longrightarrow \cdot$

Observation

(\mathbb{Z}, Succ) is not ω-categorical as there are infinitely many 2-orbits: $\mathrm{O}_{\mathrm{n}}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x}+\mathrm{n}=\mathrm{y}\}$ for $\mathrm{n} \in \mathbb{Z}$.

$(\mathbb{Z}$, Succ $)$

Definition

Succ $=\{(x, y): x+1=y\}$.
$\cdots \longrightarrow-2 \longrightarrow-1 \longrightarrow 0 \longrightarrow \cdot$

Observation

$(\mathbb{Z}$, Succ $)$ is not ω-categorical as there are infinitely many 2-orbits: $O_{n}=\{(x, y): x+n=y\}$ for $n \in \mathbb{Z}$.

Proposition

There is a sentence Φ in monotone connected SNP that describes $\operatorname{CSP}(\mathbb{Z}$, Succ $)$.

Proof

Φ existentially quantifies two binary relations Tc and Eq s.t.

- Tc contains Succ: $\operatorname{Succ}(x, y) \rightarrow T c(x, y)$

Proof

Φ existentially quantifies two binary relations Tc and Eq s.t.
■ Tc contains Succ: $\operatorname{Succ}(x, y) \rightarrow T c(x, y)$

- Tc is irreflexive: $\neg \mathrm{Tc}(x, x)$, and transitive: $\mathrm{Tc}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Tc}(\mathrm{y}, \mathrm{z}) \rightarrow \mathrm{Tc}(\mathrm{x}, \mathrm{z})$

Proof

Φ existentially quantifies two binary relations Tc and Eq s.t.
■ Tc contains Succ: $\operatorname{Succ}(x, y) \rightarrow T c(x, y)$

- Tc is irreflexive: $\neg \mathrm{Tc}(\mathrm{x}, \mathrm{x})$, and transitive: $\mathrm{Tc}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Tc}(\mathrm{y}, \mathrm{z}) \rightarrow \mathrm{Tc}(\mathrm{x}, \mathrm{z})$
■ Eq is an equivalence relation: reflexive, symmetric: $\mathrm{Eq}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{Eq}(\mathrm{y}, \mathrm{x})$, and transitive

Proof

Φ existentially quantifies two binary relations Tc and Eq s.t.
■ Tc contains Succ: $\operatorname{Succ}(x, y) \rightarrow T c(x, y)$
■ Tc is irreflexive: $\neg \mathrm{Tc}(\mathrm{x}, \mathrm{x})$, and transitive: $\mathrm{Tc}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Tc}(\mathrm{y}, \mathrm{z}) \rightarrow \mathrm{Tc}(\mathrm{x}, \mathrm{z})$
■ Eq is an equivalence relation: reflexive, symmetric:
$\mathrm{Eq}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{Eq}(\mathrm{y}, \mathrm{x})$, and transitive

- The classes of Eq contain vertices on the "same level":
$\mathrm{Eq}(\mathrm{v}, \mathrm{w}) \wedge \operatorname{Succ}(\mathrm{v}, \mathrm{x}) \wedge \operatorname{Succ}(\mathrm{w}, \mathrm{y}) \rightarrow \mathrm{Eq}(\mathrm{x}, \mathrm{y})$, and $E q(v, w) \wedge \operatorname{Succ}(x, v) \wedge \operatorname{Succ}(y, w) \rightarrow E q(x, y)$

Proof

Φ existentially quantifies two binary relations Tc and Eq s.t.

- Tc contains Succ: $\operatorname{Succ}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{Tc}(\mathrm{x}, \mathrm{y})$
\square Tc is irreflexive: $\neg \mathrm{Tc}(\mathrm{x}, \mathrm{x})$, and transitive: $\mathrm{Tc}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Tc}(\mathrm{y}, \mathrm{z}) \rightarrow \mathrm{Tc}(\mathrm{x}, \mathrm{z})$
■ Eq is an equivalence relation: reflexive, symmetric: $\mathrm{Eq}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{Eq}(\mathrm{y}, \mathrm{x})$, and transitive
- The classes of Eq contain vertices on the "same level": $\mathrm{Eq}(\mathrm{v}, \mathrm{w}) \wedge \operatorname{Succ}(\mathrm{v}, \mathrm{x}) \wedge \operatorname{Succ}(\mathrm{w}, \mathrm{y}) \rightarrow \mathrm{Eq}(\mathrm{x}, \mathrm{y})$, and $E q(v, w) \wedge \operatorname{Succ}(x, v) \wedge \operatorname{Succ}(y, w) \rightarrow E q(x, y)$
■ Elements on the "same level" agree wrt Tc: $\mathrm{Tc}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Eq}(\mathrm{y}, \mathrm{z}) \rightarrow \mathrm{Tc}(\mathrm{x}, \mathrm{z})$
In particular, we forbid the same Eq-class to contain a Tc pair.

Proof

- If there exists a homomorphism $\mathrm{h}: \mathbf{G} \rightarrow(\mathbb{Z}$, Succ $)$, then interpret Eq as: $\mathrm{Eq}(\mathrm{x}, \mathrm{y}) \leftrightarrow(\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y}))$, and put Tc to be minimal by inclusion.
- If there is a valid interpretation of Eq and Tc in G , then $\mathbf{G} / E q$ is the disjoint union of finitely many directed paths without loops, then $\mathbf{G} / E q \rightarrow(\mathbb{Z}$, Succ $)$, and so does \mathbf{G}.

(G, Eq)
G/Eq

References

- P. Erdős

Graph Theory and Probability
Canadian Journal of Mathematics, 1959, 10.4153/CJM-1959-003-9

- W. F. Dowling and J. H. Gallier

Linear-time algorithms for testing the satisfiability of propositional Horn formulae
The Journal of Logic Programming, 1984, 10.1016/0743-1066(84)90014-1

- Tomás Feder and Moshe Y. Vardi

The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory SIAM J. Comput., 1998, 10.1137/S0097539794266766

References

- Libor Barto and Jakub Opršal and Michael Pinsker The wonderland of reflections Israel Journal of Mathematics, 2018, 10.1007/s11856-017-1621-9
- Dmitriy Zhuk

A Proof of the CSP Dichotomy Conjecture
J. ACM, 2020, 10.1145/3402029

- Manuel Bodirsky and Florent R. Madelaine and Antoine Mottet A Proof of the Algebraic Tractability Conjecture for Monotone Monadic SNP
SIAM J. Comput., 2021, 10.1137/19M128466X

