RECAP of relevant MATERIAL (we work in first order baic)	
$h: A \rightarrow B$ is	•
a HONOHORPHISM if $\forall Rei T A \models R(a) =) B \models R(h(a))$.	•
on EMBEDDING if it is on injective homomorphism sit.	•
$\forall R \in \mathcal{Z} \land \neq R(a) = B \neq R(h(a))$	•
an ELEMENTARY EMBEDDING if for all first order formula \$(7)	ī)
$A \neq \Phi(\overline{a}) \iff B \neq \Phi(h(\overline{a})).$	•
	•
PROP 2.1.14 + fae:	•
$-S_{4}-S_{4}-$	•
· every model of T has a homomorphism to a model of S.	•
	0
¥∃+-formulas ave preserved lay direct limits of models of T.	•
HOMON OR PHISM PRESERVATION THEOREM	•
P=T===================================	
between models of T	•
KOŚ-TARSKI	0
Q=T= J-formula iff it is preserved by embeddings between models of -	۲.

§2.6.1 MODEL COMPLETENESS
T is MODEL COMPLETE if every embedding between models
is elementary
EXAMPLES:
• QE => MODEL COMPLETENESS - embeddings guarantee preservation of qf-formulas QE yiels that the embeddings are elementary. • Th(ZL, Succ) is model complete without QE
• Th(Q ²⁰ ; <) is not model complete $n \mapsto 2 + 1$ EQUIVALENTS TO MODEL COMPLETENESS tfoe:
V . I'S . Model. Complete
(2) every formula is $\equiv_T + o$ on \exists -formula
3) for any embedding hiA -> B between models of T,
ord & on I-formula,
and φ an \exists -formula, B= $\varphi(h(a)) \Rightarrow A = \varphi(a)$
@ every I-formula is =T to a V-formula
Seven formula is =, to a Y-formula
MODEL COMPLETE THEORIES are V3-axiomatizable

§2.6.2 CORE THEORIES
B is a CORE if all endomorphisms of B are embeddings
T is a CORE THEORY if every homomorphism between models is
examples:
- Th(Q, <) is a cove theory a < b (=) h(a) < h(b)
- Th (Q, S) is NOT a cove theory _ SEND EVERYTHING TO O
EQUIVALENTS TO CORE THEORY If de!
 T is a cove theory 3 - formulas are = to = + - formulas
3 For y atomic, 74 is equivalent to an It-formula
0=) 0) I for and los are preserved by ends.
HOMS are EMB \Rightarrow 3 fors are pres. by home \Rightarrow
3=30: hom. preserve == +-formulas. So homs ore enb.
· · · · · · · · · · · · · · · · · · ·

THE CONSTRAINT ENTAILMENT PROBLEM for T is	•
the computational problem with	•
INPUT: ϕ and ψ in variables $n_1 \dots n_n$	•
PP-formula atomic formula	•
QUESTION: DOES & ENTAIL Y? (:R. do we have TE Yn, 2n (P-))	<u>s)</u>
equivalence to CSP(T) for CORE THEORIES	•
Let T be a core 2-theory for 2 finite.	•
Then CEPCT) is equivalent to CSPCT) under pdg-time Turing reduction)oL
Proof (E) (CD(T)	•
proof (E) CSP(T) asking when a given \$P sentere \$TUE\$B is SAT.	•
CSP(T) is just the entailment problem	•
$(NPUT) \neq A \perp Q', T \neq A \perp ?$	•
$(=)$ T is a corre =) $7\sqrt{15} \equiv 7\sqrt{15} = 7\sqrt{10}$ on \exists^+ -formula	•
and a second of the second of pp-formulas, and a second of the second of	
~ is finite m is bounded above by M across all possible 4. is a CSP	•
$T \neq \forall n (P \rightarrow \forall) ff [T \cup Z \exists n (P(a) \land \forall i (a))] is NOT satisfieldfor all is n \leq M$	•
for oll isn <m< td=""><td>•</td></m<>	•

§2.6.3 MODEL COMPLETE CORE THEORIES What if T is both model complete & a core?	
EQUIVALENTS TO BEING MODEL COMPLETE CORE THE T is a model complete core theory Complete are == == == == == == == == == == == == ==	EORY tfoc
 2 formulas are ≡_T to ∃⁺ - formulas 3 For h: A → B a homomorphism between models of T, \$ B = \$\Phi(h(a)) => A = \$\Phi(a)\$ 	$\exists + - form$
(4) \exists^+ formulas are \equiv_T to \forall^- formulas (5) formulas are \equiv_T to \forall^- formulas	
T MODEL COMPLETE CORE THEORY => T :s equivalent to a t	J J+ theory

\$2.7 COMPANIONS
Perhaps T is NOT a model complete core, but we can find
S s.t. CSP(S) = CSP(T) which is a model complete core theory?
S is a CORE COMPANION of T if - S is a model complete cove theory
- Ty- = Sy- (i.e. every model of S maps homomorphically to) a model of T and vice-versa
CSUARANTEES CSP(S) = CSP(T)
EXAMPLES.
- Th(Q, <) has CORE COMPANION Th(L., <). CSP(Q, <) 3 in P
· · · · · · · · · · · · · · · · · · ·
- Th (ZL, <) has CORE COMPANION (Q, <).
$ \cdot \cdot$
- Theory of undirected hopless graphs has CORE CONPANION (IN, #).
· · · · · · · · · · · · · · · · · · ·

Q: What does a CORE COMPANION Look like (if it exists)?
- It is unique posiTIVE KAISER HULL of T
- It is unique - it corresponds to POSITIVE KAISER HULL of T - it corresponds to POSITIVE KAISER HULL of T
a homomorphism h: A -> B is an IMMERSION
if for every == formula q, B=P(h(a)) => A = P(a)
A is EXISTENTIALLY POSITIVE CLOSED for T (T-epc) if there is a homomorphism from A to a model of T and every homomorphism h: A BFT is on immersion.
T-epc iff T_{Ψ} -epc A structure is T-epc iff it is T_{Ψ} -epc.
WE CAN "CONTINUE" HODELS TO T-epc structures
Let R>max (ITI, No). Every model of T of cardinality < R admits a homomorphism to a T-epc structure of cord < R
· · · · · · · · · · · · · · · · · · ·

82.7.2 positive KAISER HULL
EXISTENCE Let T be a first-order theory. There is a UNIQUE LARGEST $\forall \exists^+$ -theory T's.t. $T'_{\forall^-} = T_{\forall^-}$ we call T' the POSITIVE KAISER HULL of T, TK++ proof:
Suppose by CONTRADICTION there are S and S' $\forall \exists t - theories s.t.$ (a) Sy- = S'y- = Ty- (b) SUS' is unsatisfiable. (a) => we can build a coherent homomorphisms fig: Ai -> Ag s.t. S for i even Ai = S (for i odd Ai = S'
B = [im Ai = SUS' since $\forall \exists + -formulas are preserved by i\forall \exists + theory of T-cpc$ structures The positive KAISER HULL of T is the set of $\forall \exists + -sentences$ holding in every T-epc structure.

§2.7.3 CORE COMPANIONS
EQUIVALENTS TO HAVING A CORE COMPANION tfor
() Thas a core companion
(2) All models of T ^{KH+} are T-epc
3 The class of T-epc structures is first-order axiomatizable
In particular, if T has a CORE COMPANION T*, - T* = theory of all T-epc structures - T* = TK++
<u>Proof</u> : $\underline{0} \Rightarrow \underline{2}$: Let U be the cove companion of T.
U is \equiv to a $\forall \exists^+$ - theory and so, by $U_{\forall^-} = T_{\forall^-}$, $U \subseteq T^{K+1+}$ by def of T^{K+1+}
So, it is sufficient to show: A = U =) A is T-epz.
• A maps have to a model of T by $U = T = T = = = = = = = = = = = = = = = $
· Let h: A → B = T be a homomorphism. Say B = P(h(a)).
$B \xrightarrow{g} C \models U = T_{\forall} - S_0 C \models P(gh(a)).$
U is a MODEL COMPLETE CORE =) goh is an elementary embedding =) At= P(a) So A is T-epe.

(2) = (3)
We know A 3 T-epc =) A = T K+++
so, if A = TKH+ =) A is T-ope, TK++ axiomatizes T-ope structures
3-1. Suppose class of T-epc structures is a xiomatized by U
• $\mathcal{U}_{\mathcal{A}} = \mathcal{T}_{\mathcal{A}}$
• Any model of U has a homom to a model of $T \Rightarrow T_{y} - \subseteq U_{y}$ -
· Any model of T can be continued to a T-epc model => UY- C TY
wodel of U
• U is a model complete cove theory this is equivalent to: every homomorphism between models of U is an immersion
this is equivalent to: every homomorphism between models of U is an immersion
Let h: A BE be a homomorphism and q be a It-formeta
$B \models P(h(a))$. $T_{V} - epc$ theory $B \models T_{V}$ -
$B \neq T_{Y} + A$ is $T_{Y} - e_{PC} \Rightarrow h$ is an immersion
by def of Tyepc

An extra for model theorists: PRESERVATION of model theoretic properties
model theorists are interested in model theoretic properties
such as STABLE, NIP, Simple etc.
Q: Let S be the cove companion of T, 1) does S preserve model theoretic properties of T?
() does S preserve model theoretic properties of T? (2) does T have the model theoretic properties of S?
<u>A1</u> : overall, yes!
Let XPEZOP, IP, K-TP, K-TP2, SOP1, SOP23. Then, T has NXP => S has NXP
A2: NO, but we do have
Ty = Sy - =) T has NXP+ iff S has NXP+
uhere XP ⁺ is the <u>Positive</u> version of XP.
See, for example DIVIDING LINES BETWEEN POSITIVE THEORIES, by GALLINARO KANSMA